Philippe Hugueney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3181463/publications.pdf

Version: 2024-02-01

50 papers

8,191 citations

126858 33 h-index 197736 49 g-index

52 all docs 52 docs citations

times ranked

52

9604 citing authors

#	Article	IF	CITATIONS
1	Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways. Plant Cell Reports, 2022, 41, 961-977.	2.8	5
2	Ancestral chemotypes of cultivated grapevine with resistance to Botryosphaeriaceaeâ€related dieback allocate metabolism towards bioactive stilbenes. New Phytologist, 2021, 229, 1133-1146.	3.5	22
3	The Algal Polysaccharide Ulvan Induces Resistance in Wheat Against Zymoseptoria tritici Without Major Alteration of Leaf Metabolome. Frontiers in Plant Science, 2021, 12, 703712.	1.7	12
4	Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics. Plant Physiology, 2021, 185, 331-351.	2.3	19
5	Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop. Viruses, 2021, 13, 2138.	1.5	10
6	The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biology, 2020, 21, 223.	3.8	48
7	Functional diversification in the <i>Nudix hydrolase</i> gene family drives sesquiterpene biosynthesis in <i>Rosa</i> × <i>wichurana</i> Plant Journal, 2020, 104, 185-199.	2.8	21
8	Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death. Journal of Experimental Botany, 2018, 69, 2883-2896.	2.4	16
9	Link between carrot leaf secondary metabolites and resistance to Alternaria dauci. Scientific Reports, 2018, 8, 13746.	1.6	25
10	Annotation, classification, genomic organization and expression of the Vitis vinifera CYPome. PLoS ONE, 2018, 13, e0199902.	1.1	11
11	Identification of Lipid Markers of Plasmopara viticola Infection in Grapevine Using a Non-targeted Metabolomic Approach. Frontiers in Plant Science, 2018, 9, 360.	1.7	22
12	The Aphid-Transmitted Turnip yellows virus Differentially Affects Volatiles Emission and Subsequent Vector Behavior in Two Brassicaceae Plants. International Journal of Molecular Sciences, 2018, 19, 2316.	1.8	22
13	Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4, 440-452.	4.7	303
14	Genetic determinism of the â€~Muscat' flavour in grapevine (<i>Vitis vinifera</i> L.) cultivars. Acta Horticulturae, 2017, , 87-92.	0.1	2
15	A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine. New Phytologist, 2017, 213, 264-274.	3.5	31
16	Arsenite response in <i>Coccomyxa</i> sp. Carn explored by transcriptomic and nonâ€targeted metabolomic approaches. Environmental Microbiology, 2016, 18, 1289-1300.	1.8	20
17	My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. Trends in Plant Science, 2016, 21, 884-894.	4.3	77
18	Genetic diversity of stilbene metabolism in Vitis sylvestris. Journal of Experimental Botany, 2015, 66, 3243-3257.	2.4	71

#	Article	IF	CITATIONS
19	Biosynthesis of monoterpene scent compounds in roses. Science, 2015, 349, 81-83.	6.0	177
20	Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems. Journal of Biotechnology, 2013, 163, 24-29.	1.9	41
21	Genetic Analysis of the Biosynthesis of 2-Methoxy-3-Isobutylpyrazine, a Major Grape-Derived Aroma Compound Impacting Wine Quality Â. Plant Physiology, 2013, 162, 604-615.	2.3	89
22	Determination of amino-acidic positions important for & mp;lt;i& mp;gt;Ocimum basilicum& amp;lt;/i& mp;gt; geraniol synthase activity. Advances in Bioscience and Biotechnology (Print), 2013, 04, 242-249.	0.3	6
23	Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine Â. Plant Physiology, 2012, 160, 1407-1419.	2.3	138
24	Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis viniferal.). BMC Plant Biology, 2011, 11, 179.	1.6	92
25	A Novel Cation-Dependent <i>O-</i> Methyltransferase Involved in Anthocyanin Methylation in Grapevine Â. Plant Physiology, 2009, 150, 2057-2070.	2.3	151
26	Metabolism and roles of stilbenes in plants. Plant Science, 2009, 177, 143-155.	1.7	540
27	Scent evolution in Chinese roses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5927-5932.	3.3	86
28	A Stress-Inducible Resveratrol <i>O</i> -Methyltransferase Involved in the Biosynthesis of Pterostilbene in Grapevine. Plant Physiology, 2008, 148, 1630-1639.	2.3	170
29	Production and Emission of Volatile Compounds by Petal Cells. Plant Signaling and Behavior, 2007, 2, 525-526.	1.2	21
30	The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449, 463-467.	13.7	3,384
31	Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta, 2007, 226, 853-866.	1.6	102
32	Role of Petal-Specific Orcinol O-Methyltransferases in the Evolution of Rose Scent. Plant Physiology, 2006, 140, 18-29.	2.3	67
33	Analysis of gene expression in rose petals using expressed sequence tags. FEBS Letters, 2002, 515, 35-38.	1.3	78
34	Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel roseO-methyltransferases. FEBS Letters, 2002, 523, 113-118.	1.3	76
35	Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta, 2000, 211, 846-854.	1.6	186
36	Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Letters, 2000, 485, 168-172.	1.3	90

3

#	Article	IF	CITATIONS
37	Induced \hat{l}^2 -Carotene Synthesis Driven by Triacylglycerol Deposition in the Unicellular Alga Dunaliella bardawil 1. Plant Physiology, 1998, 116, 1239-1248.	2.3	244
38	Developmental and Stress Regulation of Gene Expression for Plastid and Cytosolic Isoprenoid Pathways in Pepper Fruits. Plant Physiology, 1996, 111, 619-626.	2.3	103
39	Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana EMBO Journal, 1996, 15, 2331-2342.	3.5	454
40	Xanthophyll Biosynthesis. Journal of Biological Chemistry, 1996, 271, 28861-28867.	1.6	151
41	Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5630-5634.	3.3	95
42	Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts. Plant Journal, 1995, 8, 417-424.	2.8	135
43	Molecular cloning and functional expression in E. coli of a novel plant enzyme mediating î¾-carotene desaturation. FEBS Letters, 1995, 372, 199-202.	1.3	76
44	Biochemistry and Molecular Biology of Chromoplast Development. International Review of Cytology, 1995, 163, 175-247.	6.2	134
45	Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant Journal, 1994, 6, 45-54.	2.8	187
46	Expression of the Genes Encoding the Early Carotenoid Biosynthetic-Enzymes in Capsicum annuum. Biochemical and Biophysical Research Communications, 1993, 196, 1414-1421.	1.0	91
47	Carotenoid Biosynthesis and Regulation in Plants. , 1992, , 337-347.		1
48	Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant Journal, 1992, 2, 25-34.	2.8	139
49	Characterization and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene and zeta-carotene in Capsicum chromoplasts. FEBS Journal, 1992, 209, 399-407.	0.2	100
50	Purification and characterization of farnesyl pyrophosphate synthase from Capsicum annuum. FEBS Letters, 1990, 273, 235-238.	1.3	40