Sabine Schlabach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180792/publications.pdf

Version: 2024-02-01

567144 501076 28 897 15 28 citations h-index g-index papers 28 28 28 1859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoinduced Chargeâ€Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?. Angewandte Chemie - International Edition, 2015, 54, 7441-7445.	7.2	206
2	Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge. ACS Applied Materials & Samp; Interfaces, 2017, 9, 189-197.	4.0	143
3	The influence of void space on ion transport in a composite cathode for all-solid-state batteries. Journal of Power Sources, 2018, 396, 363-370.	4.0	71
4	Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. Journal of Materials Research, 2018, 33, 3287-3300.	1.2	56
5	Microwave Plasma Synthesis of Materials—From Physics and Chemistry to Nanoparticles: A Materials Scientist's Viewpoint. Inorganics, 2014, 2, 468-507.	1.2	53
6	Combinatorial exploration of the High Entropy Alloy System Co-Cr-Fe-Mn-Ni. Surface and Coatings Technology, 2017, 325, 174-180.	2.2	43
7	Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. Journal of Chromatography A, 2017, 1513, 172-182.	1.8	40
8	Local Structure and Magnetism of Fe2O3 Maghemite Nanocrystals: The Role of Crystal Dimension. Nanomaterials, 2020, 10, 867.	1.9	37
9	The influence of Y and Nb addition on the corrosion resistance of Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten Pb. Corrosion Science, 2021, 179, 109152.	3.0	27
10	Tailoring magnetic frustration in strained epitaxial FeRh films. Physical Review B, 2016, 93, .	1.1	22
11	Enhancing Selectivity and Kinetics in Oxidative Photocyclization by Supramolecular Control. Angewandte Chemie - International Edition, 2018, 57, 13662-13665.	7.2	20
12	Secondâ€Harmonic Generation from ZnO/Al ₂ O ₃ Nanolaminate Optical Metamaterials Grown by Atomic‣ayer Deposition. Advanced Optical Materials, 2016, 4, 1203-1208.	3.6	19
13	Threeâ€Phase Reconstruction Reveals How the Microscopic Structure of the Carbonâ€Binder Domain Affects Ion Transport in Lithiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 1363-1373.	2.4	19
14	Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead. Corrosion Science, 2021, 189, 109593.	3.0	18
15	Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. Journal of Materials Science, 2012, 47, 4383-4391.	1.7	16
16	Sheet-type all-solid-state batteries with sulfidic electrolytes: Analysis of kinetic limitations based on a cathode morphology study. Journal of Power Sources, 2021, 505, 230064.	4.0	15
17	Reconstruction–Simulation Approach Verifies Impedance-Derived Ion Transport Tortuosity of a Graphite Battery Electrode. Journal of the Electrochemical Society, 2018, 165, A3156-A3163.	1.3	14
18	X-ray fluorescence nano-imaging of long-term operated solid oxide electrolysis cells. Journal of Power Sources, 2019, 421, 100-108.	4.0	13

#	Article	IF	CITATIONS
19	Nanogranular SnO2 Layers for Gas Sensing Applications by In Situ Deposition of Nanoparticles Produced by the Karlsruhe Microwave Plasma Process. Plasma Processes and Polymers, 2007, 4, S865-S870.	1.6	10
20	Development of nanocomposites for anode materials in Liâ€ion batteries. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 471-473.	0.8	10
21	Nanoparticles in polymer-matrix composites. Microsystem Technologies, 2011, 17, 183-193.	1.2	9
22	Molecular Dynamics of Polymer Composites Using Rheology and Combined RheoNMR on the Example of TiO ₂ -Filled Poly(n-Alkyl Methacrylates) and Trans-1,4-Polyisoprene. Soft Materials, 2014, 12, S4-S13.	0.8	8
23	Nanoscaled Fractal Superstructures via Laser Patterningâ€"A Versatile Route to Metallic Hierarchical Porous Materials. Advanced Materials Interfaces, 2021, 8, 2000253.	1.9	8
24	Investigation of Polymerâ€Filler Interactions in TiO ₂ â€Filled Poly(<i>n</i> àâ€alkyl) Tj ETQq0 0 0 rgB7851-858.	「/Overlocl 1.1	R 10 Tf 50 54 6
25	Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films. Journal Physics D: Applied Physics, 2017, 50, 025007.	1.3	6
26	Epitaxial strain adaptation in chemically disordered FeRh thin films. Physical Review B, 2019, 99, .	1.1	5
27	Structural characterisation of Fe2O3nanoparticles. Journal of Physics: Conference Series, 2016, 712, 012105.	0.3	2
28	Understanding Hindered Diffusion & Flow in Hierarchical Porous Networks Combining Electron Tomography and Pore-Scale Simulations. Microscopy and Microanalysis, 2019, 25, 406-407.	0.2	1