Guilherme Lotufo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Activated Carbon in Thin Sand Caps Challenged with Ongoing PCB Inputs from Sediment Deposition: PCB Uptake in Clams (Mercenaria mercenaria) and Passive Samplers. Archives of Environmental Contamination and Toxicology, 2022, 82, 95-104.	2.1	2
2	Interlaboratory Comparison of Three Sediment Bioaccumulation Tests. Environmental Toxicology and Chemistry, 2022, 41, 1260-1275.	2.2	1
3	Passive-Sampler-Based Bioavailability Assessment of PCB Congeners Associated with Aroclor-Containing Paint Chips in the Presence of Sediment. Archives of Environmental Contamination and Toxicology, 2022, 82, 105-118.	2.1	0
4	Acute Toxicity of Eight Aqueous Film-Forming Foams to 14 Aquatic Species. Environmental Science & Technology, 2022, 56, 6078-6090.	4.6	10
5	Interlaboratory Study of Polyethylene and Polydimethylsiloxane Polymeric Samplers for <i>Ex Situ</i> Measurement of Freelyâ€Ðissolved Hydrophobic Organic Compounds in Sediment Porewater. Environmental Toxicology and Chemistry, 2022, , .	2.2	2
6	Genomic investigations of acute munitions exposures on the health and skin microbiome composition of leopard frog (Rana pipiens) tadpoles. Environmental Research, 2021, 192, 110245.	3.7	8
7	Multi-species Aquatic Toxicity Assessment of 1-Methyl-3-Nitroguanidine (MeNQ). Archives of Environmental Contamination and Toxicology, 2021, 80, 426-436.	2.1	2
8	Streamlining Freshwater Bioaccumulation Bioassays: Letting the Worms Do the Hard Work. Environmental Toxicology and Chemistry, 2021, 40, 1673-1677.	2.2	1
9	Accumulation of Insensitive Munition Compounds in the Earthworm Eisenia andrei from Amended Soil: Methodological Considerations for Determination of Bioaccumulation Factors. Environmental Toxicology and Chemistry, 2021, 40, 1713-1725.	2.2	2
10	Mode of action evaluation for reduced reproduction in Daphnia pulex exposed to the insensitive munition, 1-methyl-3-nitro-1-nitroguanidine (MeNQ). Ecotoxicology, 2021, 30, 1203-1215.	1.1	4
11	Environmental Characterization of Underwater Munitions Constituents at a Former Military Training Range. Environmental Toxicology and Chemistry, 2021, , .	2.2	3
12	Leaching Rate of Polychlorinated Biphenyls (PCBs) from Marine Paint Chips. Archives of Environmental Contamination and Toxicology, 2021, 81, 324-334.	2.1	5
13	Evaluation of dredged sediment for aquatic placement: interpreting contaminant bioaccumulation. Environmental Monitoring and Assessment, 2020, 192, 277.	1.3	2
14	Comparative Toxicological Evaluation of UVâ€Degraded versus Parentâ€Insensitive Munition Compound 1â€Methylâ€3â€Nitroguanidine in Fathead Minnow. Environmental Toxicology and Chemistry, 2020, 39, 612-622.	2.2	7
15	Release of Munitions Constituents in Aquatic Environments Under Realistic Scenarios and Validation of Polar Organic Chemical Integrative Samplers for Monitoring. Environmental Toxicology and Chemistry, 2019, 38, 2383-2391.	2.2	8
16	Bioaccumulation in Functionally Different Species: Ongoing Input of PCBs with Sediment Deposition to Activated Carbon Remediated Bed Sediments. Environmental Toxicology and Chemistry, 2019, 38, 2326-2336.	2.2	14
17	Molecular Evaluation of Impacted Reproductive Physiology in Fathead Minnow Testes Provides Mechanistic Insights into Insensitive Munitions Toxicology. Aquatic Toxicology, 2019, 213, 105204.	1.9	3
18	Can Tenax Extraction Be Used as a Surrogate Exposure Metric for Laboratoryâ€Based Bioaccumulation Tests Using Marine Sediments?. Environmental Toxicology and Chemistry, 2019, 38, 1188-1197.	2.2	5

Guilherme Lotufo

#	Article	IF	CITATIONS
19	Investigation of polar organic chemical integrative sampler (POCIS) flow rate dependence for munition constituents in underwater environments. Environmental Monitoring and Assessment, 2018, 190, 171.	1.3	7
20	Field validation of POCIS for monitoring at underwater munitions sites. Environmental Toxicology and Chemistry, 2018, 37, 2257-2267.	2.2	20
21	Transcriptomics provides mechanistic indicators of mixture toxicology for IMX-101 and IMX-104 formulations in fathead minnows (Pimephales promelas). Aquatic Toxicology, 2018, 199, 138-151.	1.9	17
22	Subchronic, chronic, lethal and sublethal toxicity of insensitive munitions mixture formulations relative to individual constituents in Hyalella azteca. Chemosphere, 2018, 210, 795-804.	4.2	15
23	Toxicity and Bioaccumulation of Munitions Constituents in Aquatic and Terrestrial Organisms. Challenges and Advances in Computational Chemistry and Physics, 2017, , 445-479.	0.6	3
24	Cross Validation of Two Partitioning-Based Sampling Approaches in Mesocosms Containing PCB Contaminated Field Sediment, Biota, and Activated Carbon Amendment. Environmental Science & Technology, 2017, 51, 9996-10004.	4.6	19
25	Accumulation of 2,4â€dinitroanisole in the earthworm <i>Eisenia fetida</i> from chemically spiked and aged natural soils. Environmental Toxicology and Chemistry, 2016, 35, 1835-1842.	2.2	5
26	Accumulation and depuration of trinitrotoluene and related extractable and nonextractable (bound) residues in marine fish and mussels. Environmental Pollution, 2016, 210, 129-136.	3.7	23
27	Effects of sediment amended with Deepwater Horizon incident slick oil on the infaunal amphipod Leptocheirus plumulosus. Marine Pollution Bulletin, 2016, 109, 253-258.	2.3	18
28	Optimization and Field Demonstration of a Passive Sampling Technology for Monitoring Conventional Munition Constituents in Aquatic Environments. Marine Technology Society Journal, 2016, 50, 23-32.	0.3	16
29	Application of POCIS for exposure assessment of munitions constituents during constant and fluctuating exposure. Environmental Toxicology and Chemistry, 2015, 34, 959-967.	2.2	22
30	Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in <i>Rana pipiens</i> tadpoles. Environmental Toxicology and Chemistry, 2015, 34, 880-886.	2.2	11
31	Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in <i>Rana pipiens</i> tadpoles. Environmental Toxicology and Chemistry, 2015, 34, 873-879.	2.2	34
32	Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress. BMC Genomics, 2014, 15, 591.	1.2	27
33	Assessing Biological Effects. SERDP and ESTCP Remediation Technology Monograph Series, 2014, , 131-175.	0.3	3
34	A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary. Environmental Pollution, 2012, 162, 457-465.	3.7	24
35	A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: System description and proof of concept. Environmental Pollution, 2012, 162, 449-456.	3.7	24
36	Comparing laboratory―and fieldâ€measured biota–sediment accumulation factors. Integrated Environmental Assessment and Management, 2012, 8, 32-41.	1.6	31

GUILHERME LOTUFO

#	Article	IF	CITATIONS
37	Whole-body and body-part-specific bioconcentration of explosive compounds in sheepshead minnows. Ecotoxicology and Environmental Safety, 2011, 74, 301-306.	2.9	11
38	Genomic investigation of yearâ€long and multigenerational exposures of fathead minnow to the munitions compound RDX. Environmental Toxicology and Chemistry, 2011, 30, 1852-1864.	2.2	11
39	Fate and effects of Composition B in multispecies marine exposures. Environmental Toxicology and Chemistry, 2010, 29, 1330-1337.	2.2	17
40	Toxicity and bioconcentration evaluation of RDX and HMX using sheepshead minnows in water exposures. Ecotoxicology and Environmental Safety, 2010, 73, 1653-1657.	2.9	18
41	Toxicity of trinitrotoluene to sheepshead minnows in water exposures. Ecotoxicology and Environmental Safety, 2010, 73, 718-726.	2.9	20
42	Toxicity and bioaccumulation of TNT in marine fish in sediment exposures. Ecotoxicology and Environmental Safety, 2010, 73, 1720-1727.	2.9	21
43	Bioconcentration, Bioaccumulation, and Biotransformation of Explosives and Related Compounds in Aquatic Organisms. , 2009, , 135-155.		8
44	Toxicity of explosive compounds to the marine mussel, Mytilus galloprovincialis, in aqueous exposures. Ecotoxicology and Environmental Safety, 2007, 68, 228-236.	2.9	41
45	Bioaccumulation of explosive compounds in the marine mussel, Mytilus galloprovincialis. Ecotoxicology and Environmental Safety, 2007, 68, 237-245.	2.9	30
46	TOXICITY AND BIOACCUMULATION OF 2,4,6-TRINITROTOLUENE IN FATHEAD MINNOW (PIMEPHALES) Tj ETQq 0 C	0 rgBT /0 2.2	Overlock 10
47	ACCUMULATION OF HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE IN CHANNEL CATFISH (ICTALURUS) TJ ETQq1 1 Chemistry, 2005, 24, 1962.	0.784314 2.2	rgBT /Over 25
48	TOXICITY AND FATE OF TWO MUNITIONS CONSTITUENTS IN SPIKED SEDIMENT EXPOSURES WITH THE MARINE AMPHIPOD EOHAUSTORIUS ESTUARIUS. Environmental Toxicology and Chemistry, 2005, 24, 2887.	2.2	35
49	Comparative and Mixture Sediment Toxicity of Trinitrotoluene and Its Major Transformation Products to a Freshwater Midge. Archives of Environmental Contamination and Toxicology, 2005, 49, 333-342.	2.1	15
50	Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 2—Bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus). Chemosphere, 2005, 58, 1161-1168.	4.2	57
51	Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 1—Bioconcentration and distribution in channel catfish (Ictalurus punctatus). Chemosphere, 2005, 58, 1153-1159.	4.2	77
52	RECOMMENDATIONS FOR THE ASSESSMENT OF TNT TOXICITY IN SEDIMENT. Environmental Toxicology and Chemistry, 2004, 23, 141.	2.2	41
53	Toxicity of the explosives 2,4,6â€trinitrotoluene, hexahydroâ€1,3,5â€trinitroâ€1,3,5â€triazine, and octahydroâ€1,3,5,7â€tetranitroâ€1,3,5,7â€tetrazocine in sediments to <i>Chironomus tentans</i> and <i>Hyalella azteca</i> Lowâ€dose hormesis and highâ€dose mortality. Environmental Toxicology and Chemistry, 2002, 21, 1475-1482.	2.2	80
54	TOXICITY OF THE EXPLOSIVES 2,4,6-TRINITROTOLUENE, HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE, AND OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE IN SEDIMENTS TO CHIRONOMUS TENTANS AND HYALELLA AZTECA: LOW-DOSE HORMESIS AND HIGH-DOSE MORTALITY. Environmental Toxicology and Chemistry, 2002, 21, 1475.	2.2	46

Guilherme Lotufo

#	Article	IF	CITATIONS
55	Toxicity and bioaccumulation of ddt in freshwater amphipods in exposures to spiked sediments. Environmental Toxicology and Chemistry, 2001, 20, 810-825.	2.2	36
56	Toxicity of sedimentâ€associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environmental Toxicology and Chemistry, 2001, 20, 1762-1771.	2.2	72
57	Comparative toxicity and toxicokinetics of ddt and its major metabolites in freshwater amphipods. Environmental Toxicology and Chemistry, 2000, 19, 368-379.	2.2	73
58	Bioaccumulation of sediment-associated fluoranthene in benthic copepods: uptake, elimination and biotransformation. Aquatic Toxicology, 1998, 44, 1-15.	1.9	72
59	Toxicity of sediment-associated PAHs to an estuarine copepod: Effects on survival, feeding, reproduction and behavior. Marine Environmental Research, 1997, 44, 149-166.	1.1	64
60	Effects of sediment-associated phenanthrene on survival, development and reproduction of two species of meiobenthic copepods. Marine Ecology - Progress Series, 1997, 151, 91-102.	0.9	69