Renata bartesaghi #### List of Publications by Citations Source: https://exaly.com/author-pdf/3180608/renata-bartesaghi-publications-by-citations.pdf Version: 2024-04-28 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 91 2,946 31 51 g-index 95 3,464 5 avg, IF L-index | # | Paper | IF | Citations | |----|--|------|-----------| | 91 | Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. <i>Hippocampus</i> , 2009 , 19, 763-72 | 3.5 | 209 | | 90 | Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down syndrome and in Ts65Dn mice. <i>Hippocampus</i> , 2007 , 17, 665-78 | 3.5 | 192 | | 89 | Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. <i>Brain Pathology</i> , 2008 , 18, 180-97 | 6 | 170 | | 88 | Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome. <i>Journal of Neuroscience</i> , 2010 , 30, 8769-79 | 6.6 | 144 | | 87 | Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide. <i>Journal of Neurochemistry</i> , 2002 , 82, 1282-9 | 6 | 112 | | 86 | APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. <i>Human Molecular Genetics</i> , 2011 , 20, 1560-73 | 5.6 | 92 | | 85 | Widespread proliferation impairment and hypocellularity in the cerebellum of fetuses with down syndrome. <i>Brain Pathology</i> , 2011 , 21, 361-73 | 6 | 83 | | 84 | Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3 signaling. <i>Neurobiology of Disease</i> , 2014 , 70, 53-68 | 7.5 | 72 | | 83 | Timing of therapies for Down syndrome: the sooner, the better. <i>Frontiers in Behavioral Neuroscience</i> , 2015 , 9, 265 | 3.5 | 68 | | 82 | Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse, a model for Down syndrome. <i>Brain Pathology</i> , 2010 , 20, 106-18 | 6 | 65 | | 81 | Nitric oxide protects neuroblastoma cells from apoptosis induced by serum deprivation through cAMP-response element-binding protein (CREB) activation. <i>Journal of Biological Chemistry</i> , 2002 , 277, 49896-902 | 5.4 | 64 | | 80 | Is it possible to improve neurodevelopmental abnormalities in Down syndrome?. <i>Reviews in the Neurosciences</i> , 2011 , 22, 419-55 | 4.7 | 62 | | 79 | CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling. <i>Journal of Biological Chemistry</i> , 2010 , 285, 10098-10109 | 5.4 | 60 | | 78 | Prenatal pharmacotherapy rescues brain development in a Down Syndrome mouse model. <i>Brain</i> , 2014 , 137, 380-401 | 11.2 | 59 | | 77 | Nitric oxide negatively regulates proliferation and promotes neuronal differentiation through N-Myc downregulation. <i>Journal of Cell Science</i> , 2004 , 117, 4727-37 | 5.3 | 58 | | 76 | Cell cycle elongation impairs proliferation of cerebellar granule cell precursors in the Ts65Dn mouse, an animal model for Down syndrome. <i>Brain Pathology</i> , 2009 , 19, 224-37 | 6 | 53 | | 75 | Choline acetyltransferase activity at different ages in brain of Ts65Dn mice, an animal model for Down\structuressystems and related neurodegenerative diseases. <i>Journal of Neurochemistry</i> , 2006 , 97, 515-26 | 6 | 52 | ## (2009-2016) | 74 | HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. <i>Human Molecular Genetics</i> , 2016 , 25, 3887-3907 | 5.6 | 51 | | |----|--|-----|----|--| | 73 | Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. <i>Neuroscience</i> , 2016 , 333, 277-301 | 3.9 | 47 | | | 72 | Postnatal neurogenesis in the dentate gyrus of the guinea pig. <i>Hippocampus</i> , 2005 , 15, 285-301 | 3.5 | 47 | | | 71 | Neurogenesis impairment: An early developmental defect in Down syndrome. <i>Free Radical Biology and Medicine</i> , 2018 , 114, 15-32 | 7.8 | 47 | | | 70 | Early pharmacotherapy with fluoxetine rescues dendritic pathology in the Ts65Dn mouse model of down syndrome. <i>Brain Pathology</i> , 2013 , 23, 129-43 | 6 | 45 | | | 69 | The amyloid precursor protein (APP) triplicated gene impairs neuronal precursor differentiation and neurite development through two different domains in the Ts65Dn mouse model for Down syndrome. <i>Journal of Biological Chemistry</i> , 2013 , 288, 20817-20829 | 5.4 | 41 | | | 68 | Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals. <i>Neuroscience</i> , 2006 , 142, 247-65 | 3.9 | 40 | | | 67 | Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys. <i>Hippocampus</i> , 2004 , 14, 948-63 | 3.5 | 40 | | | 66 | Electrophysiological analysis of the hippocampal projections to the entorhinal area. <i>Neuroscience</i> , 1989 , 30, 51-62 | 3.9 | 40 | | | 65 | Pharmacotherapy with fluoxetine restores functional connectivity from the dentate gyrus to field CA3 in the Ts65Dn mouse model of down syndrome. <i>PLoS ONE</i> , 2013 , 8, e61689 | 3.7 | 38 | | | 64 | Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. <i>Neurobiology of Disease</i> , 2015 , 74, 204-18 | 7.5 | 37 | | | 63 | Inhibition of GSK3Irescues hippocampal development and learning in a mouse model of CDKL5 disorder. <i>Neurobiology of Disease</i> , 2015 , 82, 298-310 | 7.5 | 35 | | | 62 | A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS. <i>Experimental Neurology</i> , 2017 , 298, 79-96 | 5.7 | 35 | | | 61 | Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome. <i>Neurobiology of Disease</i> , 2015 , 82, 385-396 | 7.5 | 31 | | | 60 | Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat. <i>Journal of Cell Science</i> , 2006 , 119, 3161-70 | 5.3 | 31 | | | 59 | CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder. <i>Human Molecular Genetics</i> , 2018 , 27, 1572-1592 | 5.6 | 30 | | | 58 | APP-dependent alteration of GSK3Dactivity impairs neurogenesis in the Ts65Dn mouse model of Down syndrome. <i>Neurobiology of Disease</i> , 2014 , 67, 24-36 | 7.5 | 28 | | | 57 | Widespread impairment of cell proliferation in the neonate Ts65Dn mouse, a model for Down syndrome. <i>Cell Proliferation</i> , 2009 , 42, 171-81 | 7.9 | 28 | | | 56 | Effects of early environment on granule cell morphology in the dentate gyrus of the guinea-pig. <i>Neuroscience</i> , 2001 , 102, 87-100 | 3.9 | 27 | |----|--|---------------------------|----| | 55 | Impact of environmental enrichment on neurogenesis in the dentate gyrus during the early postnatal period. <i>Brain Research</i> , 2011 , 1415, 23-33 | 3.7 | 25 | | 54 | Electrophysiological analysis of the dorsal hippocampal commissure projections to the entorhinal area. <i>Neuroscience</i> , 1988 , 26, 55-67 | 3.9 | 25 | | 53 | Activation of perforant path neurons to field CA1 by hippocampal projections. <i>Hippocampus</i> , 2003 , 13, 235-49 | 3.5 | 24 | | 52 | Interlamellar transfer of impulses in the hippocampal formation. <i>Experimental Neurology</i> , 1983 , 82, 550 | - 6 7 ₇ | 24 | | 51 | Effect of early isolation on the synaptic function in the dentate gyrus and field CA1 of the guinea pig. <i>Hippocampus</i> , 2004 , 14, 482-98 | 3.5 | 23 | | 50 | Pyramidal neuron types in field CA2 of the guinea pig. Brain Research Bulletin, 1999, 50, 263-73 | 3.9 | 22 | | 49 | CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2012 , 1819, 1173-85 | 6 | 21 | | 48 | Neonatal isolation impairs neurogenesis in the dentate gyrus of the guinea pig. <i>Hippocampus</i> , 2007 , 17, 78-91 | 3.5 | 21 | | 47 | Early-occurring proliferation defects in peripheral tissues of the Ts65Dn mouse model of Down syndrome are associated with patched1 over expression. <i>Laboratory Investigation</i> , 2012 , 92, 1648-60 | 5.9 | 20 | | 46 | Neurochemical correlates of nicotine neurotoxicity on rat habenulo-interpeduncular cholinergic neurons. <i>NeuroToxicology</i> , 2005 , 26, 467-74 | 4.4 | 19 | | 45 | New Perspectives for the Rescue of Cognitive Disability in Down Syndrome. <i>Journal of Neuroscience</i> , 2015 , 35, 13843-52 | 6.6 | 18 | | 44 | Abnormal development of the inferior temporal region in fetuses with Down syndrome. <i>Brain Pathology</i> , 2018 , 28, 986-998 | 6 | 17 | | 43 | Postnatal neurogenesis in the hippocampal dentate gyrus and subventricular zone of the Getingen minipig. <i>Brain Research Bulletin</i> , 2011 , 85, 169-79 | 3.9 | 17 | | 42 | Effects of early environment on pyramidal neuron morphology in field CA1 of the guinea-pig. <i>Neuroscience</i> , 2003 , 116, 715-32 | 3.9 | 17 | | 41 | Hippocampal output to the subicular cortex: an electrophysiological study. <i>Experimental Neurology</i> , 1986 , 92, 114-33 | 5.7 | 17 | | 40 | Cyclic AMP-mediated regulation of transcription factor Lot1 expression in cerebellar granule cells.
Journal of Biological Chemistry, 2005 , 280, 33541-51 | 5.4 | 16 | | 39 | Age-related impairment of olfactory bulb neurogenesis in the Ts65Dn mouse model of Down syndrome. <i>Experimental Neurology</i> , 2014 , 251, 1-11 | 5.7 | 15 | ## (2018-2009) | 38 | Lot1 is a key element of the pituitary adenylate cyclase-activating polypeptide (PACAP)/cyclic AMP pathway that negatively regulates neuronal precursor proliferation. <i>Journal of Biological Chemistry</i> , 2009 , 284, 15325-38 | 5.4 | 15 | | |----|---|------|----|--| | 37 | Effect of early isolation on signal transfer in the entorhinal cortex-dentate-hippocampal system. <i>Neuroscience</i> , 2006 , 137, 875-90 | 3.9 | 15 | | | 36 | Input-output relations in the entorhinal-hippocampal-entorhinal loop: entorhinal cortex and dentate gyrus. <i>Hippocampus</i> , 1995 , 5, 440-51 | 3.5 | 15 | | | 35 | Treatment with the flavonoid 7,8-Dihydroxyflavone: a promising strategy for a constellation of body and brain disorders. <i>Critical Reviews in Food Science and Nutrition</i> , 2020 , 1-38 | 11.5 | 15 | | | 34 | Sex differences in the stereological parameters of the hippocampal dentate gyrus of the guinea-pig before puberty. <i>Neuroscience</i> , 2005 , 132, 375-87 | 3.9 | 14 | | | 33 | Effects of early environment on field CA3a pyramidal neuron morphology in the guinea-pig. Neuroscience, 2002 , 110, 475-88 | 3.9 | 14 | | | 32 | SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation. <i>Glia</i> , 2016 , 64, 1437-60 | 9 | 14 | | | 31 | Sex differences in the hippocampal dentate gyrus of the guinea-pig before puberty. <i>Neuroscience</i> , 2003 , 121, 327-39 | 3.9 | 13 | | | 30 | Neuroanatomical alterations and synaptic plasticity impairment in the perirhinal cortex of the Ts65Dn mouse model of Down syndrome. <i>Neurobiology of Disease</i> , 2017 , 106, 89-100 | 7.5 | 12 | | | 29 | Epigallocatechin gallate: A useful therapy for cognitive disability in Down syndrome?. <i>Neurogenesis</i> (Austin, Tex.), 2017 , 4, e1270383 | | 11 | | | 28 | Effects of early environment on field CA2 pyramidal neurons in the guinea-pig. <i>Neuroscience</i> , 2004 , 123, 703-14 | 3.9 | 10 | | | 27 | Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome. <i>Neurobiology of Disease</i> , 2017 , 103, 11-23 | 7.5 | 9 | | | 26 | Topographic activation of the medial entorhinal cortex by presubicular commissural projections.
Journal of Comparative Neurology, 2005 , 487, 283-99 | 3.4 | 9 | | | 25 | Hippocampal-entorhinal relationships: electrophysiological analysis of the ventral hippocampal projections to the ventral entorhinal cortex. <i>Neuroscience</i> , 1994 , 61, 457-66 | 3.9 | 9 | | | 24 | Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome. <i>Brain Research Bulletin</i> , 2018 , 140, 378-391 | 3.9 | 9 | | | 23 | Prenatal Administration of Oleic Acid or Linolenic Acid Reduces Neuromorphological and Cognitive Alterations in Ts65dn Down Syndrome Mice. <i>Journal of Nutrition</i> , 2020 , 150, 1631-1643 | 4.1 | 8 | | | 22 | Effects of early isolation on layer II neurons in the entorhinal cortex of the guinea pig. <i>Neuroscience</i> , 2003 , 120, 721-32 | 3.9 | 8 | | | 21 | Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. <i>European Neuropsychopharmacology</i> , 2018 , 28, 675-690 | 1.2 | 7 | | | 20 | Timing of Treatment with the Flavonoid 7,8-DHF Critically Impacts on Its Effects on Learning and Memory in the Ts65Dn Mouse. <i>Antioxidants</i> , 2019 , 8, | 7.1 | 6 | |----|---|-------------------------------|---| | 19 | Fiber groups in the dorsal psalterium of the guinea pig. <i>Experimental Neurology</i> , 1985 , 88, 500-14 | 5.7 | 6 | | 18 | Lithium Restores Age-related Olfactory Impairment in the Ts65Dn Mouse Model of Down Syndrome. <i>CNS and Neurological Disorders - Drug Targets</i> , 2017 , 16, 812-819 | 2.6 | 6 | | 17 | Neonatal treatment with cyclosporine A restores neurogenesis and spinogenesis in the Ts65Dn model of Down syndrome. <i>Neurobiology of Disease</i> , 2019 , 129, 44-55 | 7.5 | 5 | | 16 | Neonatal therapy with clenbuterol and salmeterol restores spinogenesis and dendritic complexity in the dentate gyrus of the Ts65Dn model of Down syndrome. <i>Neurobiology of Disease</i> , 2020 , 140, 1048 | 7 ⁷ 4 ⁵ | 5 | | 15 | Sex differences in the hilar mossy cells of the guinea-pig before puberty. <i>Neuroscience</i> , 2006 , 139, 565-7 | '6 .9 | 5 | | 14 | Electrophysiological analysis of the hippocampal output to the presubiculum. <i>Neuroscience</i> , 1990 , 37, 335-45 | 3.9 | 5 | | 13 | Neuroanatomical alterations in higher-order thalamic nuclei of fetuses with Down syndrome. <i>Clinical Neurology and Neurosurgery</i> , 2020 , 194, 105870 | 2 | 4 | | 12 | Prenatal, but not Postnatal, Curcumin Administration Rescues Neuromorphological and Cognitive Alterations in Ts65Dn Down Syndrome Mice. <i>Journal of Nutrition</i> , 2020 , 150, 2478-2489 | 4.1 | 4 | | 11 | Subicular hypotrophy in fetuses with Down syndrome and in the Ts65Dn model of Down syndrome. <i>Brain Pathology</i> , 2019 , 29, 366-379 | 6 | 4 | | 10 | Early appearance of developmental alterations in the dendritic tree of the hippocampal granule cells in the Ts65Dn model of Down syndrome. <i>Hippocampus</i> , 2021 , 31, 435-447 | 3.5 | 3 | | 9 | The flavonoid 7,8-DHF fosters prenatal brain proliferation potency in a mouse model of Down syndrome. <i>Scientific Reports</i> , 2021 , 11, 6300 | 4.9 | 2 | | 8 | Selective inhibitors of GSK-3🛭 suitable therapy for Down syndrome?. <i>European Neuropsychopharmacology</i> , 2018 , 28, S72-S73 | 1.2 | 1 | | 7 | Obstructive sleep apneas naturally occur in mice during REM sleep and are highly prevalent in a mouse model of Down syndrome. <i>Neurobiology of Disease</i> , 2021 , 159, 105508 | 7.5 | 1 | | 6 | Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. <i>Molecular Syndromology</i> , 2021 , 12, 202-218 | 1.5 | 1 | | 5 | Impaired Brain Mitochondrial Bioenergetics in the Ts65Dn Mouse Model of Down Syndrome Is Restored by Neonatal Treatment with the Polyphenol 7,8-Dihydroxyflavone <i>Antioxidants</i> , 2021 , 11, | 7.1 | 1 | | 4 | Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders <i>Annual Review of Pharmacology and Toxicology</i> , 2022 , 62, 211-233 | 17.9 | 0 | | 3 | Early postnatal oleic acid administration enhances synaptic development and cognitive abilities in the Ts65Dn mouse model of Down syndrome. <i>Nutritional Neuroscience</i> , 2020 , 1-13 | 3.6 | 0 | #### LIST OF PUBLICATIONS - ISDN2014_0057: Inhibition of GSK3-beta rescues hippocampal development in a knockout mouse model of CDKL5 encephalopathy. *International Journal of Developmental Neuroscience*, **2015**, 47, 12-13 ²⁻⁷ - Epigallocatechin-3-gallate **2021**, 619-630