
Paolo Livieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180513/publications.pdf Version: 2024-02-01

PAOLO LIVIERI

#	Article	IF	CITATIONS
1	Three-dimensional fatigue crack propagation by means of first order SIF approximation. Procedia Structural Integrity, 2022, 39, 194-203.	0.8	1
2	Fatigue strength assessment of three-dimensional welded joints with the JV parameter. Theoretical and Applied Fracture Mechanics, 2022, , 103367.	4.7	0
3	Fatigue crack propagation of planar three-dimensional cracks. International Journal of Fatigue, 2022, 163, 107062.	5.7	1
4	Fatigue strength of aluminium welded joints by a non-local approach. International Journal of Fatigue, 2021, 143, 106000.	5.7	8
5	Asymptotic behaviour of the Oore-Burns integral for cracks with a corner and correction formulae for embedded convex defects. Engineering Fracture Mechanics, 2021, 252, 107663.	4.3	5
6	Overview of the geometrical influence on the fatigue strength of steel butt welds by a nonlocal approach. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 502-514.	3.4	5
7	A closed form for the Stress Intensity Factor of a small embedded square-like flaw. Frattura Ed Integrita Strutturale, 2020, 14, 182-191.	0.9	0
8	Stress intensity factor for small embedded cracks in weldments. Frattura Ed Integrita Strutturale, 2019, 13, 613-622.	0.9	1
9	Implicit gradient approach for numerical analysis of laser welded joints. Procedia Structural Integrity, 2018, 8, 309-317.	0.8	1
10	An approximation in closed form for the integral of Oore–Burns for cracks similar to a star domain. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 3-19.	3.4	5
11	Analysis of the thickness effect in thin steel welded structures under uniaxial fatigue loading. International Journal of Fatigue, 2017, 101, 363-370.	5.7	11
12	Evaluation of effective stress along the border of lateral notches. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1030-1039.	3.4	1
13	Stress intensity factors from stress analysis of an equivalent hole. Theoretical and Applied Fracture Mechanics, 2016, 84, 119-128.	4.7	7
14	Stress intensity factors for embedded elliptical cracks in cylindrical and spherical vessels. Theoretical and Applied Fracture Mechanics, 2016, 86, 260-266.	4.7	17
15	A non-linear model for the fatigue assessment of notched components under fatigue loadings. International Journal of Fatigue, 2016, 82, 624-633.	5.7	21
16	New weight functions and second order approximation of the Oore–Burns integral for elliptical cracks subject to arbitrary normal stress field. Engineering Fracture Mechanics, 2015, 138, 100-117.	4.3	9
17	Implicit gradient and integral average effective stresses: relationships and numerical approximations. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 190-199.	3.4	12
18	Sharp evaluation of the Oore–Burns integral for cracks subjected to arbitrary normal stress field. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 95-106.	3.4	7

PAOLO LIVIERI

#	Article	IF	CITATIONS
19	Numerical methods for calculating the structural reliability of fatigue-loaded welds. Welding International, 2014, 28, 865-872.	0.7	1
20	Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linearâ€elastic crack tip stress fields. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 39-55.	3.4	38
21	On the second non-singular stress term of the V-notch solution: a new engineering solution. International Journal of Fracture, 2013, 181, 83-98.	2.2	19
22	Mode I Stress Intensity Factors for triangular corner crack nearby intersecting of cylindrical holes. Frattura Ed Integrita Strutturale, 2013, 7, 80-91.	0.9	3
23	The effect of throat underflushing on the fatigue strength of fillet weldments. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 884-892.	3.4	7
24	Predicting the fatigue strength of small thickness welded joints using the implicit gradient method. Welding International, 2012, 26, 839-844.	0.7	3
25	Evaluation of Stress Intensity Factors from elliptical notches under mixed mode loadings. Engineering Fracture Mechanics, 2012, 81, 110-119.	4.3	9
26	A numerical approach to fatigue assessment of spot weld joints. Fatigue and Fracture of Engineering Materials and Structures, 2011, 34, 32-45.	3.4	24
27	Numerical evaluation of fatigue strength on mechanical notched components under multiaxial loadings. International Journal of Fatigue, 2011, 33, 661-671.	5.7	15
28	An analysis of three-dimensional planar embedded cracks subjected to uniform tensile stress. Engineering Fracture Mechanics, 2010, 77, 1656-1664.	4.3	11
29	First order Oore–Burns integral for nearly circular cracks under uniform tensile loading. International Journal of Solids and Structures, 2010, 47, 1167-1176.	2.7	12
30	An application of the implicit gradient method to welded structures under multiaxial fatigue loadings. International Journal of Fatigue, 2009, 31, 12-19.	5.7	18
31	The use of the JV parameter in welded joints: Stress analysis and fatigue assessment. International Journal of Fatigue, 2009, 31, 153-163.	5.7	29
32	Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading. Engineering Fracture Mechanics, 2008, 75, 1875-1889.	4.3	173
33	An implicit gradient application to fatigue of complex structures. Engineering Fracture Mechanics, 2008, 75, 1804-1814.	4.3	38
34	Use of J-integral to predict static failures in sharp V-notches and rounded U-notches. Engineering Fracture Mechanics, 2008, 75, 1779-1793.	4.3	98
35	Analytical Approach in Autofrettaged Spherical Pressure Vessels Considering the Bauschinger Effect. Journal of Pressure Vessel Technology, Transactions of the ASME, 2007, 129, 411-419.	0.6	34
36	An implicit gradient application to fatigue of sharp notches and weldments. Engineering Fracture Mechanics, 2007, 74, 515-526.	4.3	54

PAOLO LIVIERI

#	Article	IF	CITATIONS
37	Analytical evaluation of J-integral for elliptical and parabolic notches under mode I and mode II loading. International Journal of Fracture, 2007, 148, 57-71.	2.2	16
38	An implicit gradient type of static failure criterion for mixed-mode loading. International Journal of Fracture, 2006, 141, 497-511.	2.2	40
39	Analytic evaluation of the difference between Oore-Burns and Irwin stress intensity factor for elliptical cracks. Acta Mechanica, 2005, 176, 95-105.	2.1	9
40	Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. International Journal of Fracture, 2005, 133, 247-276.	2.2	312
41	Fatigue limit evaluation of notches, small cracks and defects: an engineering approach. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 1037-1049.	3.4	34
42	A new path independent integral applied to notched components under modeÂl loadings. International Journal of Fracture, 2003, 123, 107-125.	2.2	69
43	A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 49-58.	3.4	172
44	Elastoplastic strain concentration factors in finite thickness plates. Journal of Strain Analysis for Engineering Design, 2003, 38, 31-36.	1.8	18
45	Autofrettaged Cylindrical Vessels and Bauschinger Effect: An Analytical Frame for Evaluating Residual Stress Distributions. Journal of Pressure Vessel Technology, Transactions of the ASME, 2002, 124, 38-46.	0.6	36
46	Notch stress intensity factors and fatigue strength of aluminium and steel welded joints. International Journal of Fatigue, 2001, 23, 225-232.	5.7	181
47	Plastic notch stress intensity factors for large V-shaped notches under mixed load conditions. International Journal of Fracture, 2001, 107, 361-377.	2.2	36
48	Welded joints: Limits on criteria for plasticity zones located at weld toes. Welding International, 2000, 14, 806-810.	0.7	2