
Sheikh M F Rabbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil-root interaction in the rhizosheath regulates the water uptake of wheat. Rhizosphere, 2022, 21, 100462.	1.4	12
2	High water availability in drought tolerant crops is driven by root engineering of the soil micro-habitat. Geoderma, 2021, 383, 114738.	2.3	15
3	Greater, but not necessarily better: The influence of biochar on soil hydraulic properties. European Journal of Soil Science, 2021, 72, 2033-2048.	1.8	11
4	Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Science of the Total Environment, 2021, 778, 146286.	3.9	45
5	Poorly crystalline iron and aluminium oxides contribute to the carbon saturation and sorption of dissolved organic carbon in the soil. Soil Use and Management, 2021, 37, 120-125.	2.6	7
6	Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma, 2020, 360, 114033.	2.3	41
7	The impact of carbon addition on the organisation of rhizosheath of chickpea. Scientific Reports, 2018, 8, 18028.	1.6	13
8	Plant roots redesign the rhizosphere to alter the threeâ€dimensional physical architecture and water dynamics. New Phytologist, 2018, 219, 542-550.	3.5	73
9	Root architectural responses of wheat cultivars to localised phosphorus application are phenotypically similar. Journal of Plant Nutrition and Soil Science, 2017, 180, 169-177.	1.1	12
10	Increased Carbon Stabilization in Australian Ferrosol with High Carbon Saturation Deficit. Communications in Soil Science and Plant Analysis, 2017, 48, 1772-1780.	0.6	3
11	Root Plasticity Not Evident in N-Enriched Soil Volumes for Wheat (<i>Triticum aestivum</i> L.) and Barley (<i>Hordeum vulgare</i> L.) Varieties. Communications in Soil Science and Plant Analysis, 2017, 48, 2002-2012.	0.6	3
12	An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1. PLoS ONE, 2017, 12, e0176433.	1.1	49
13	Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Scientific Reports, 2016, 6, 33012.	1.6	93
14	Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Scientific Reports, 2015, 5, 17866.	1.6	52
15	Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia. Soil and Tillage Research, 2015, 146, 193-203.	2.6	43
16	Spatial Variability of Physical Soil Quality Index of an Agricultural Field. Applied and Environmental Soil Science, 2014, 2014, 1-10.	0.8	10
17	Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma, 2014, 216, 10-18.	2.3	114
18	Characterization of Soil Organic Matter in Aggregates and Size-Density Fractions by Solid State ¹³ C CPMAS NMR Spectroscopy. Communications in Soil Science and Plant Analysis, 2014, 45, 1523-1537.	0.6	21

Sнеікн М F Rabbi

#	Article	IF	CITATIONS
19	The relationships between land uses, soil management practices, and soil carbon fractions in South Eastern Australia. Agriculture, Ecosystems and Environment, 2014, 197, 41-52.	2.5	52
20	Impact of carbon farming practices on soil carbon in northern New South Wales. Soil Research, 2013, 51, 707.	0.6	51
21	Mean Residence Time of Soil Organic Carbon in Aggregates Under Contrasting Land Uses Based on Radiocarbon Measurements. Radiocarbon, 2013, 55, 127-139.	0.8	21