
Chuangnian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor acid microenvironment-activated self-targeting & splitting gold nanoassembly for tumor chemo-radiotherapy. Bioactive Materials, 2022, 7, 377-388.	8.6	11
2	Titanium alloy composited with dual-cytokine releasing polysaccharide hydrogel to enhance osseointegration via osteogenic and macrophage polarization signaling pathways. International Journal of Energy Production and Management, 2022, 9, .	1.9	20
3	Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy. Acta Biomaterialia, 2022, 141, 398-407.	4.1	21
4	In vitro evidence of oncofetal antigen and TLR-9 agonist co-delivery by alginate nanovaccine for liver cancer immunotherapy. Biomaterials Science, 2022, , .	2.6	6
5	Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials, 2022, 285, 121538.	5.7	72
6	Gelatinized PLCL Electrospun Membrane for the Prevention of Postoperative Abdominal Adhesion Through Fibrinolysis Activation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
7	ECM-mimetic immunomodulatory hydrogel for methicillin-resistant <i>Staphylococcus aureus</i> –infected chronic skin wound healing. Science Advances, 2022, 8, .	4.7	102
8	Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111378.	2.5	38
9	Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomaterials, 2021, 268, 120579.	5.7	46
10	Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. Journal of Materials Chemistry B, 2021, 9, 3892-3899.	2.9	18
11	In Vivo Insulin Peptide Autoantigen Delivery by Mannosylated Sodium Alginate Nanoparticles Delayed but Could Not Prevent the Onset of Type 1 Diabetes in Nonobese Diabetic Mice. Molecular Pharmaceutics, 2021, 18, 1806-1818.	2.3	9
12	Radial porous SiO2 nanoflowers potentiate the effect of antigen/adjuvant in antitumor immunotherapy. Frontiers of Chemical Science and Engineering, 2021, 15, 1296-1311.	2.3	3
13	PolyTLR7/8a-conjugated, antigen-trapping gold nanorods elicit anticancer immunity against abscopal tumors by photothermal therapy-induced in situ vaccination. Biomaterials, 2021, 275, 120921.	5.7	40
14	Polymer Composite Sponges with Inherent Antibacterial, Hemostatic, Inflammationâ€Modulating and Proregenerative Performances for Methicillinâ€Resistant <i>Staphylococcus aureus</i> â€Infected Wound Healing. Advanced Healthcare Materials, 2021, 10, e2101247.	3.9	47
15	Cascaded amplification of intracellular oxidative stress and reversion of multidrug resistance by nitric oxide prodrug based-supramolecular hydrogel for synergistic cancer chemotherapy. Bioactive Materials, 2021, 6, 3300-3313.	8.6	7
16	Supramolecular co-assembly of self-adjuvanting nanofibrious peptide hydrogel enhances cancer vaccination by activating MyD88-dependent NF-κB signaling pathway without inflammation. Bioactive Materials, 2021, 6, 3924-3934.	8.6	23
17	Self-assembling, self-adjuvanting and fully synthetic peptide nanovaccine for cancer immunotherapy. Smart Materials in Medicine, 2021, 2, 237-249.	3.7	14
18	Bio-orthogonal click reaction-enabled highly specific in situ cellularization of tissue engineering scaffolds. Biomaterials, 2020, 230, 119615.	5.7	21

CHUANGNIAN ZHANG

#	Article	IF	CITATIONS
19	Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials, 2020, 230, 119649.	5.7	102
20	Bioinspired Nanofibrous Glycopeptide Hydrogel Dressing for Accelerating Wound Healing: A Cytokineâ€Free, M2â€Type Macrophage Polarization Approach. Advanced Functional Materials, 2020, 30, 2006454.	7.8	123
21	Multifunctional Natural Polymer Nanoparticles as Antifibrotic Gene Carriers for CKD Therapy. Journal of the American Society of Nephrology: JASN, 2020, 31, 2292-2311.	3.0	29
22	Synthetic Polymeric Antibacterial Hydrogel for Methicillin-Resistant <i>Staphylococcus aureus-</i> Infected Wound Healing: Nanoantimicrobial Self-Assembly, Drug- and Cytokine-Free Strategy. ACS Nano, 2020, 14, 12905-12917.	7.3	152
23	<p>Antigen-Conjugated Silica Solid Sphere as Nanovaccine for Cancer Immunotherapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2685-2697.	3.3	8
24	Superhydrophilic fluorinated polymer and nanogel for high-performance 19F magnetic resonance imaging. Biomaterials, 2020, 256, 120184.	5.7	31
25	Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials, 2020, 255, 120210.	5.7	74
26	3D printing of implantable elastic PLCL copolymer scaffolds. Soft Matter, 2020, 16, 2141-2148.	1.2	26
27	A Generic Coordination Assemblyâ€Enabled Nanocoating of Individual Tumor Cells for Personalized Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1900474.	3.9	14
28	Chitosan/calcium phosphates nanosheet as a vaccine carrier for effective cross-presentation of exogenous antigens. Carbohydrate Polymers, 2019, 224, 115172.	5.1	26
29	Dual pH-responsive "charge-reversal like―gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Research, 2019, 12, 2815-2826.	5.8	29
30	Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics, 2019, 9, 2299-2314.	4.6	88
31	Synthetic, Supramolecular, and Selfâ€Adjuvanting CD8 ⁺ T ell Epitope Vaccine Increases the Therapeutic Antitumor Immunity. Advanced Therapeutics, 2019, 2, 1900010.	1.6	15
32	Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomaterialia, 2019, 85, 1-26.	4.1	142
33	Enhanced Radiosensitization by Gold Nanoparticles with Acidâ€Triggered Aggregation in Cancer Radiotherapy. Advanced Science, 2019, 6, 1801806.	5.6	98
34	The surrounding tissue contributes to smooth muscle cells' regeneration and vascularization of small diameter vascular grafts. Biomaterials Science, 2019, 7, 914-925.	2.6	29
35	The regeneration of macroâ€porous electrospun poly(É›â€caprolactone) vascular graft during longâ€term <i>in situ</i> implantation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1618-1627.	1.6	32
36	Co-delivery of doxorubicin and pheophorbide A by pluronic F127 micelles for chemo-photodynamic combination therapy of melanoma. Journal of Materials Chemistry B, 2018, 6, 3305-3314.	2.9	17

#	Article	IF	CITATIONS
37	Dendritic Cells Pulsed with Exosomes in Combination with PD-1 Antibody Increase the Efficacy of Sorafenib in Hepatocellular Carcinoma Model. Translational Oncology, 2018, 11, 250-258.	1.7	57
38	NO prodrug-conjugated, self-assembled, pH-responsive and galactose receptor targeted nanoparticles for co-delivery of nitric oxide and doxorubicin. Nanoscale, 2018, 10, 4179-4188.	2.8	60
39	Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells inÂvivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials, 2018, 159, 119-129.	5.7	132
40	Engineering Dendritic-Cell-Based Vaccines and PD-1 Blockade in Self-Assembled Peptide Nanofibrous Hydrogel to Amplify Antitumor T-Cell Immunity. Nano Letters, 2018, 18, 4377-4385.	4.5	147
41	Self-assembled PEG- <i>b</i> -PDPA- <i>b</i> -PGEM copolymer nanoparticles as protein antigen delivery vehicles to dendritic cells: preparation, characterization and cellular uptake. International Journal of Energy Production and Management, 2017, 4, 11-20.	1.9	17
42	Redox- and light-responsive alginate nanoparticles as effective drug carriers for combinational anticancer therapy. Nanoscale, 2017, 9, 3304-3314.	2.8	44
43	Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. Journal of Controlled Release, 2017, 256, 170-181.	4.8	128
44	Effect of Resveratrol on Modulation of Endothelial Cells and Macrophages for Rapid Vascular Regeneration from Electrospun Poly(ε-caprolactone) Scaffolds. ACS Applied Materials & Interfaces, 2017, 9, 19541-19551.	4.0	67
45	A Light Responsive Nanoparticle-Based Delivery System Using Pheophorbide A Graft Polyethylenimine for Dendritic Cell-Based Cancer Immunotherapy. Molecular Pharmaceutics, 2017, 14, 1760-1770.	2.3	64
46	Engineering biodegradable guanidyl-decorated PEG-PCL nanoparticles as robust exogenous activators of DCs and antigen cross-presentation. Nanoscale, 2017, 9, 13413-13418.	2.8	24
47	Correction: Guanidinylated cationic nanoparticles as robust protein antigen delivery systems and adjuvants for promoting antigen-specific immune responses in vivo. Journal of Materials Chemistry B, 2016, 4, 6746-6747.	2.9	1
48	Guanidinylated cationic nanoparticles as robust protein antigen delivery systems and adjuvants for promoting antigen-specific immune responses in vivo. Journal of Materials Chemistry B, 2016, 4, 5608-5620.	2.9	18
49	Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. International Journal of Pharmaceutics, 2013, 451, 1-11.	2.6	98
50	Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials, 2012, 33, 2187-2196.	5.7	247
51	Antitumor activity of drug loaded glycyrrhetinic acid modified alginate nanoparticles on mice bearing orthotopic liver tumor. Journal of Controlled Release, 2011, 152, e111-e113.	4.8	7
52	Glycyrrhetinic acid-modified poly(ethylene glycol)–b-poly(γ-benzyl l-glutamate) micelles for liver targeting therapy. Acta Biomaterialia, 2010, 6, 3927-3935.	4.1	114
53	Insight into glycyrrhetinic acid: The role of the hydroxyl group on liver targeting. International Journal of Pharmaceutics, 2010, 400, 153-157.	2.6	43
54	Cytotoxicity of liver targeted drug-loaded alginate nanoparticles. Science in China Series B: Chemistry, 2009, 52, 1382-1387.	0.8	22

#	Article	IF	CITATIONS
55	Glycyrrhetinic acid-modified nanoparticles for drug delivery: Preparation and characterization. Science Bulletin, 2009, 54, 3121-3126.	1.7	22