Tong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179918/publications.pdf Version: 2024-02-01

TONC CHENC

#	Article	IF	CITATIONS
1	Genome-Wide Mutagenesis Reveals That ORF7 Is a Novel VZV Skin-Tropic Factor. PLoS Pathogens, 2010, 6, e1000971.	4.7	105
2	Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut, 2016, 65, 658-671.	12.1	104
3	Oral immunization of animals with transgenic cherry tomatillo expressing HBsAg. World Journal of Gastroenterology, 2003, 9, 996.	3.3	68
4	The Cross-Neutralizing Activity of Enterovirus 71 Subgenotype C4 Vaccines in Healthy Chinese Infants and Children. PLoS ONE, 2013, 8, e79599.	2.5	62
5	Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody. Nature Communications, 2017, 8, 505.	12.8	61
6	Gender associates with both susceptibility to infection and pathogenesis of SARS-CoV-2 in Syrian hamster. Signal Transduction and Targeted Therapy, 2021, 6, 136.	17.1	57
7	A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters. Science Translational Medicine, 2021, 13, .	12.4	56
8	A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Science Bulletin, 2022, 67, 1372-1387.	9.0	54
9	Protection against Lethal Enterovirus 71 Challenge in Mice by a Recombinant Vaccine Candidate Containing a Broadly Cross-Neutralizing Epitope within the VP2 EF Loop. Theranostics, 2014, 4, 498-513.	10.0	52
10	Animal models for emerging coronavirus: progress and new insights. Emerging Microbes and Infections, 2020, 9, 949-961.	6.5	50
11	Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nature Communications, 2021, 12, 5652.	12.8	49
12	A rapid and efficient method to express target genes in mammalian cells by baculovirus. World Journal of Gastroenterology, 2004, 10, 1612.	3.3	47
13	Bioinspired Artificial Nanodecoys for Hepatitisâ€B Virus. Angewandte Chemie - International Edition, 2018, 57, 12499-12503.	13.8	46
14	HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation. Gut, 2019, 68, 2044-2056.	12.1	46
15	Performance of Detecting IgM Antibodies against Enterovirus 71 for Early Diagnosis. PLoS ONE, 2010, 5, e11388.	2.5	44
16	ORF7 of Varicella-Zoster Virus Is a Neurotropic Factor. Journal of Virology, 2012, 86, 8614-8624.	3.4	44
17	Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8427-8432.	7.1	43
18	Antigenic analysis of divergent genotypes human Enterovirus 71 viruses by a panel of neutralizing monoclonal antibodies: Current genotyping of EV71 does not reflect their antigenicity. Vaccine, 2013, 31, 425-430.	3.8	41

#	Article	IF	CITATIONS
19	Atomic structures of enterovirus D68 in complex with two monoclonal antibodies define distinct mechanisms of viral neutralization. Nature Microbiology, 2019, 4, 124-133.	13.3	40
20	Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous System. Viruses, 2018, 10, 49.	3.3	39
21	The prevalence of antibodies to SARS-CoV-2 among blood donors in China. Nature Communications, 2021, 12, 1383.	12.8	37
22	A second open reading frame in human enterovirus determines viral replication in intestinal epithelial cells. Nature Communications, 2019, 10, 4066.	12.8	36
23	A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71. Scientific Reports, 2015, 5, 12973.	3.3	35
24	A unique B cell epitope-based particulate vaccine shows effective suppression of hepatitis B surface antigen in mice. Gut, 2020, 69, 343-354.	12.1	34
25	Serological survey of neutralizing antibodies to eight major enteroviruses among healthy population. Emerging Microbes and Infections, 2018, 7, 1-15.	6.5	33
26	ER stress regulating protein phosphatase 2A-B56 ^{î3} , targeted by hepatitis B virus X protein, induces cell cycle arrest and apoptosis of hepatocytes. Cell Death and Disease, 2018, 9, 762.	6.3	29
27	Analysis of Cross-Reactive Neutralizing Antibodies in Human HFMD Serum with an EV71 Pseudovirus-Based Assay. PLoS ONE, 2014, 9, e100545.	2.5	29
28	A Chimeric Humanized Mouse Model by Engrafting the Human Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cell for the Chronic Hepatitis B Virus Infection. Frontiers in Microbiology, 2018, 9, 908.	3.5	28
29	A neonatal mouse model for the evaluation of antibodies and vaccines against coxsackievirus A6. Antiviral Research, 2016, 134, 50-57.	4.1	26
30	ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells. Journal of Virology, 2017, 91, .	3.4	26
31	A neonatal mouse model of coxsackievirus A10 infection for anti-viral evaluation. Antiviral Research, 2017, 144, 247-255.	4.1	25
32	Virusâ€Free and Liveâ€Cell Visualizing SARSâ€CoVâ€2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors. Small Methods, 2021, 5, 2001031.	8.6	25
33	Identification of Antibodies with Non-overlapping Neutralization Sites that Target Coxsackievirus A16. Cell Host and Microbe, 2020, 27, 249-261.e5.	11.0	24
34	RNA Interference inhibits Hepatitis B Virus of different genotypes in Vitro and in Vivo. BMC Microbiology, 2010, 10, 214.	3.3	23
35	Herpes simplex virus type 1 abrogates the antiviral activity of Ch25h via its virion host shutoff protein. Antiviral Research, 2017, 143, 69-73.	4.1	23
36	Ferritin nanocage-based antigen delivery nanoplatforms: epitope engineering for peptide vaccine design. Biomaterials Science, 2019, 7, 1794-1800.	5.4	23

#	Article	IF	CITATIONS
37	Difference of T cell and B cell activation in two homologous proteins with similar antigenicity but great distinct immunogenicity. Molecular Immunology, 2007, 44, 3261-3266.	2.2	22
38	Efficient inhibition of HIV-1 replication by an artificial polycistronic miRNA construct. Virology Journal, 2012, 9, 118.	3.4	21
39	Construction and characterization of an infectious clone of coxsackievirus A6 that showed high virulence in neonatal mice. Virus Research, 2015, 210, 165-168.	2.2	21
40	Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10. Science Advances, 2018, 4, eaat7459.	10.3	19
41	Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating. Cell Host and Microbe, 2021, 29, 448-462.e5.	11.0	19
42	Development of an IgM-capture ELISA for Coxsackievirus A16 infection. Journal of Virological Methods, 2011, 171, 107-110.	2.1	18
43	A novel combined vaccine based on monochimeric VLP co-displaying multiple conserved epitopes against enterovirus 71 and varicella-zoster virus. Vaccine, 2017, 35, 2728-2735.	3.8	18
44	Expression and immunoactivity of chimeric particulate antigens of receptor binding site-core antigen of hepatitis B virus. World Journal of Gastroenterology, 2005, 11, 492.	3.3	17
45	Dexamethasone ameliorates severe pneumonia but slightly enhances viral replication in the lungs of SARS-CoV-2-infected Syrian hamsters. Cellular and Molecular Immunology, 2022, 19, 290-292.	10.5	17
46	Development of an Enzyme-Linked Immunosorbent Spot Assay To Measure Serum-Neutralizing Antibodies against Coxsackievirus B3. Vaccine Journal, 2014, 21, 312-320.	3.1	15
47	Oncolytic activity of a coxsackievirus B3 strain in human endometrial cancer cell lines. Virology Journal, 2018, 15, 65.	3.4	15
48	Cross-species tropism and antigenic landscapes of circulating SARS-CoV-2 variants. Cell Reports, 2022, 38, 110558.	6.4	15
49	In Vivo Time-Related Evaluation of a Therapeutic Neutralization Monoclonal Antibody against Lethal Enterovirus 71 Infection in a Mouse Model. PLoS ONE, 2014, 9, e109391.	2.5	14
50	A monoclonal antibody-based VZV glycoprotein E quantitative assay and its application on antigen quantitation in VZV vaccine. Applied Microbiology and Biotechnology, 2015, 99, 4845-4853.	3.6	14
51	Development and evaluation of rapid point-of-care tests for detection of Enterovirus 71 and Coxsackievirus A16 specific immunoglublin M antibodies. Journal of Virological Methods, 2016, 231, 44-47.	2.1	14
52	A highly conserved epitope-vaccine candidate against varicella-zoster virus induces neutralizing antibodies in mice. Vaccine, 2016, 34, 1589-1596.	3.8	13
53	A potential therapeutic neutralization monoclonal antibody specifically against multi-coxsackievirus A16 strains challenge. Human Vaccines and Immunotherapeutics, 2019, 15, 2343-2350.	3.3	13
54	A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice. Vaccine, 2016, 34, 5938-5945.	3.8	12

#	Article	IF	CITATIONS
55	Optimized HepaRG is a suitable cell source to generate the human liver chimeric mouse model for the chronic hepatitis B virus infection. Emerging Microbes and Infections, 2018, 7, 1-17.	6.5	12
56	A bispecific broadly neutralizing antibody against enterovirus 71 and coxsackievirus A16 with therapeutic potential. Antiviral Research, 2019, 161, 28-35.	4.1	12
57	Female sex hormone, progesterone, ameliorates the severity of SARS-CoV-2-caused pneumonia in the Syrian hamster model. Signal Transduction and Targeted Therapy, 2022, 7, 47.	17.1	12
58	Variants of Green Fluorescent Protein GFPxm. Marine Biotechnology, 2006, 8, 560-566.	2.4	11
59	Development of a novel baculovirus titration method using the Enzyme-linked immunosorbent spot (ELISPOT) assay. Journal of Virological Methods, 2013, 188, 114-120.	2.1	11
60	Development of a coxsackievirus A16 neutralization test based on the enzyme-linked immunospot assay. Journal of Virological Methods, 2015, 215-216, 56-60.	2.1	11
61	Agonist c-Met Monoclonal Antibody Augments the Proliferation of hiPSC-derived Hepatocyte-Like Cells and Improves Cell Transplantation Therapy for Liver Failure in Mice. Theranostics, 2019, 9, 2115-2128.	10.0	11
62	SARS-CoV-2 infection and disease outcomes in non-human primate models: advances and implications. Emerging Microbes and Infections, 2021, 10, 1881-1889.	6.5	10
63	Development of a skin- and neuro-attenuated live vaccine for varicella. Nature Communications, 2022, 13, 824.	12.8	10
64	Development of a varicella-zoster virus neutralization assay using a glycoprotein K antibody enzyme-linked immunosorbent spot assay. Journal of Virological Methods, 2014, 200, 10-14.	2.1	9
65	Construction and characterization of an infectious cDNA clone of Echovirus 25. Virus Research, 2015, 205, 41-44.	2.2	9
66	Serological Evaluation of Immunity to the Varicella-Zoster Virus Based on a Novel Competitive Enzyme-Linked Immunosorbent Assay. Scientific Reports, 2016, 6, 20577.	3.3	9
67	Varicella-zoster virus ORF7 interacts with ORF53 and plays a role in its trans-Golgi network localization. Virologica Sinica, 2017, 32, 387-395.	3.0	9
68	Bioinspired Artificial Nanodecoys for Hepatitisâ€B Virus. Angewandte Chemie, 2018, 130, 12679-12683.	2.0	9
69	Three SARS-CoV-2 antibodies provide broad and synergistic neutralization against variants of concern, including Omicron. Cell Reports, 2022, 39, 110862.	6.4	9
70	Modulation of host CD59 expression by varicella-zoster virus in human xenografts in vivo. Virology, 2016, 491, 96-105.	2.4	8
71	Development of sandwich ELISAs that can distinguish different types of coxsackievirus A16 viral particles. Applied Microbiology and Biotechnology, 2016, 100, 2809-2815.	3.6	8
72	Rapid Neutralization Testing System for Zika Virus Based on an Enzyme-Linked Immunospot Assay. ACS Infectious Diseases, 2020, 6, 811-819.	3.8	8

#	Article	IF	CITATIONS
73	DLL4 restores damaged liver by enhancing hBMSC differentiation into cholangiocytes. Stem Cell Research, 2020, 47, 101900.	0.7	8
74	A SCID mouse-human lung xenograft model of SARS-CoV-2 infection. Theranostics, 2021, 11, 6607-6615.	10.0	8
75	PIKfyve inhibitors against SARS-CoV-2 and its variants including Omicron. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	8
76	Insights into the function of tegument proteins from the varicella zoster virus. Science China Life Sciences, 2015, 58, 739-749.	4.9	7
77	Functional analysis of human cytomegalovirus UL/b′ region using SCID-hu mouse model. Journal of Medical Virology, 2016, 88, 1417-1426.	5.0	7
78	Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids. Nature Microbiology, 2020, 5, 1542-1552.	13.3	7
79	Development of A Neonatal Mouse Model for Coxsackievirus B1 Antiviral Evaluation. Virologica Sinica, 2021, 36, 1575-1584.	3.0	7
80	Cell-based reporter assays for measurements of antibody-mediated cellular cytotoxicity and phagocytosis against SARS-CoV-2 spike protein. Journal of Virological Methods, 2022, , 114564.	2.1	7
81	RNA interference inhibits hepatitis B virus gene expression and replication in HepG2-N10 cells. Chinese Journal of Digestive Diseases, 2006, 7, 230-236.	1.0	6
82	Evaluation of immunity to varicella zoster virus with a novel double antigen sandwich enzyme-linked immunosorbent assay. Applied Microbiology and Biotechnology, 2016, 100, 9321-9329.	3.6	6
83	Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia. Virology, 2017, 512, 34-38.	2.4	6
84	A SCID mouse-human lung xenograft model of varicella-zoster virus infection. Antiviral Research, 2017, 146, 45-53.	4.1	6
85	Development of an efficient neutralization assay for Coxsackievirus A10. Applied Microbiology and Biotechnology, 2019, 103, 1931-1938.	3.6	6
86	Persisting lung pathogenesis and minimum residual virus in hamster after acute COVID-19. Protein and Cell, 2022, 13, 72-77.	11.0	6
87	An HBV-tolerant immunocompetent model that effectively simulates chronic hepatitis B virus infection in mice. Experimental Animals, 2016, 65, 373-382.	1.1	4
88	A novel toolbox for the in vitro assay of hepatitis D virus infection. Scientific Reports, 2017, 7, 40199.	3.3	3
89	Robust <i>in vitro</i> assay for analyzing the neutralization activity of serum specimens against hepatitis B virus. Emerging Microbes and Infections, 2019, 8, 724-733.	6.5	3
90	Tetracysteine as a Reporter for Gene Therapy. Biomedical and Environmental Sciences, 2009, 22, 496-501.	0.2	2

#	Article	IF	CITATIONS
91	Detection and analysis of tupaia hepatocytes via mAbs against tupaia serum albumin. Experimental Animals, 2016, 65, 117-123.	1.1	2
92	A uniform quantitative enzyme-linked immunosorbent assay for Coxsackievirus A16 antigen in vaccine. Human Vaccines and Immunotherapeutics, 2021, 17, 381-388.	3.3	2
93	Rational Design of a Skin- and Neuro-Attenuated Live Varicella Vaccine: A Review and Future Perspectives. Viruses, 2022, 14, 848.	3.3	2
94	Variants of Green Fluorescent Protein GFPxm. Marine Biotechnology, 2006, 8, 560.	2.4	1
95	Evaluation of the cross-neutralization activities elicited by Coxsackievirus A10 vaccine strains. Human Vaccines and Immunotherapeutics, 2024, 17, 5334-5347.	3.3	1
96	Development of a rapid neutralization assay for the detection of neutralizing antibodies against coxsackievirus B1. Diagnostic Microbiology and Infectious Disease, 2022, 103, 115676.	1.8	1
97	Immune Response Induced by a Different Combined Immunization of HBsAg Vaccine. Intervirology, 2007, 50, 336-340.	2.8	0
98	Liver chimeric mice with tupaia hepatocyte transplantation as an animal model for hepatitis B virus infection and antiviral therapy. Biosafety and Health, 2019, 1, 76-83.	2.7	0
99	Hydrophobicity of reactive site loop of SCCA1 affects its binding to hepatitis B virus. World Journal of Gastroenterology, 2005, 11, 2864.	3.3	0