Alan Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179540/publications.pdf

Version: 2024-02-01

292 papers 18,470 citations

71
h-index

17105 122 g-index

308 all docs 308 docs citations

308 times ranked 21475 citing authors

#	Article	IF	CITATIONS
1	Launching a comparative effectiveness adaptive platform trial of monoclonal antibodies for COVID-19 in 21Âdays. Contemporary Clinical Trials, 2022, 113, 106652.	1.8	11
2	Machine Learning to Discern Interactive Clusters of Risk Factors for Late Recurrence of Metastatic Breast Cancer. Cancers, 2022, 14, 253.	3.7	3
3	Development of a One-Step Qualitative RT-PCR Assay to Detect the SARS-CoV-2 Omicron (B.1.1.529) Variant in Respiratory Specimens. Journal of Clinical Microbiology, 2022, 60, jcm0002422.	3.9	22
4	Prospective Evaluation of Coronavirus Disease 2019 (COVID-19) Vaccine Responses Across a Broad Spectrum of Immunocompromising Conditions: the COVID-19 Vaccination in the Immunocompromised Study (COVICS). Clinical Infectious Diseases, 2022, 75, e630-e644.	5.8	65
5	Evaluation of Viral Loads in Patients With SARS-CoV-2 Delta Variant Infection: Higher Loads Do Not Translate Into Different Testing Scenarios. Microbiology Insights, 2022, 15, 117863612210875.	2.0	2
6	Evaluation of the Cepheid Xpert Xpress SARS-CoV-2 test for bronchoalveolar lavage. Journal of Clinical Virology Plus, 2022, 2, 100067.	1.0	3
7	Clinical evaluation of the Cue's COVID‑19 diagnostic test to detect SARSâ€CoVâ€⊋ in the upper respiratory tract. Journal of Medical Virology, 2022, 94, 3517-3519.	5.0	3
8	Interferon- \hat{l}^3 increases sensitivity to chemotherapy and provides immunotherapy targets in models of metastatic castration-resistant prostate cancer. Scientific Reports, 2022, 12, 6657.	3.3	8
9	The matricellular protein decorin delivered intradermally with coacervate improves wound resolution in the <scp>CXCR3</scp> â€deficient mouse model of hypertrophic scarring. Wound Repair and Regeneration, 2022, 30, 436-447.	3.0	4
10	Performance of the Sofia SARS-CoV-2 Rapid Antigen Test in Symptomatic and Asymptomatic Pediatric Patients. Journal of the Pediatric Infectious Diseases Society, 2022, 11, 417-421.	1.3	4
11	First detection of SARSâ€CoVâ€2 Omicron BA.4 variant in Western Pennsylvania, United States. Journal of Medical Virology, 2022, 94, 4053-4055.	5.0	17
12	Predictive model for severe COVID-19 using SARS-CoV-2 whole-genome sequencing and electronic health record data, March 2020-May 2021. PLoS ONE, 2022, 17, e0271381.	2.5	2
13	Effectiveness of Casirivimab-Imdevimab and Sotrovimab During a SARS-CoV-2 Delta Variant Surge. JAMA Network Open, 2022, 5, e2220957.	5.9	37
14	Integrative microphysiological tissue systems of cancer metastasis to the liver. Seminars in Cancer Biology, 2021, 71, 157-169.	9.6	5
15	Variable Performance in 6 Commercial SARS-CoV-2 Antibody Assays May Affect Convalescent Plasma and Seroprevalence Screening. American Journal of Clinical Pathology, 2021, 155, 343-353.	0.7	27
16	Prostate cancer liver metastasis: Dormancy and resistance to therapy. Seminars in Cancer Biology, 2021, 71, 2-9.	9.6	24
17	Preprocedural SARS-CoV-2 Testing to Sustain Medically Needed Health Care Delivery During the COVID-19 Pandemic: A Prospective Observational Study. Open Forum Infectious Diseases, 2021, 8, ofab022.	0.9	7
18	Novel combination therapy reduces subconjunctival fibrosis after glaucoma filtration surgery in the rabbit model. Clinical and Experimental Ophthalmology, 2021, 49, 60-69.	2.6	6

#	Article	IF	CITATIONS
19	Binding of alpha-ACTN4 to EGF receptor enables its rapid phosphorylation. Heliyon, 2021, 7, e06011.	3.2	5
20	IP-10 (CXCL10) Can Trigger Emergence of Dormant Breast Cancer Cells in a Metastatic Liver Microenvironment. Frontiers in Oncology, 2021, 11, 676135.	2.8	19
21	Performance of a Rapid SARS-CoV-2 Antigen Detection Assay in Symptomatic Children. Pediatrics, 2021, 148, .	2.1	14
22	The UPMC OPTIMISE-C19 (OPtimizing Treatment and Impact of Monoclonal antibodieS through) Tj ETQq0 0 0 rg8 comparative effectiveness platform trial with response-adaptive randomization. Trials, 2021, 22, 363.	BT /Overlo 1.6	ck 10 Tf 50 20
23	ECM-regulation of autophagy: The yin and the yang of autophagy during wound healing. Matrix Biology, 2021, 100-101, 197-206.	3.6	23
24	A Cross-Sectional Study of SARS-CoV-2 Seroprevalence between Fall 2020 and February 2021 in Allegheny County, Western Pennsylvania, USA. Pathogens, 2021, 10, 710.	2.8	8
25	Suboptimal Response to Coronavirus Disease 2019 Messenger RNA Vaccines in Patients With Hematologic Malignancies: A Need for Vigilance in the Postmasking Era. Open Forum Infectious Diseases, 2021, 8, ofab353.	0.9	99
26	Antibody Responses After mRNA-Based COVID-19 Vaccination in Residential Older Adults: Implications for Reopening. Journal of the American Medical Directors Association, 2021, 22, 1593-1598.	2.5	25
27	Atorvastatin facilitates chemotherapy effects in metastatic triple-negative breast cancer. British Journal of Cancer, 2021, 125, 1285-1298.	6.4	15
28	Differential Antibody Response to mRNA COVID-19 Vaccines in Healthy Subjects. Microbiology Spectrum, 2021, 9, e0034121.	3.0	114
29	Dysregulation of the mevalonate pathway during SARSâ€CoVâ€2 infection: An in silico study. Journal of Medical Virology, 2021, 93, 2396-2405.	5.0	12
30	Akt isoforms differentially provide for chemoresistance in prostate cancer. Cancer Biology and Medicine, 2021, 19, 635-650.	3.0	7
31	Preventing metastatic emergence of breast cancer. Aging, 2021, 13, 22627-22628.	3.1	0
32	Performance of SARS-CoV-2 antigen testing in symptomatic and asymptomatic adults: a single-center evaluation. BMC Infectious Diseases, 2021, 21, 1071.	2.9	22
33	The pan-therapeutic resistance of disseminated tumor cells: Role of phenotypic plasticity and the metastatic microenvironment. Seminars in Cancer Biology, 2020, 60, 138-147.	9.6	26
34	Conjunctival goblet cells: Ocular surface functions, disorders that affect them, and the potential for their regeneration. Ocular Surface, 2020, 18, 19-26.	4.4	38
35	A Perspective on Therapeutic Pan-Resistance in Metastatic Cancer. International Journal of Molecular Sciences, 2020, 21, 7304.	4.1	11
36	Leveraging Bayesian networks and information theory to learn risk factors for breast cancer metastasis. BMC Bioinformatics, 2020, 21, 298.	2.6	4

#	Article	IF	Citations
37	Injected Versus Sponge-Applied Mitomycin C (MMC) During Modified Trabeculectomy in New Zealand White Rabbit Model. Translational Vision Science and Technology, 2020, 9, 23.	2.2	4
38	<p>Assessing Immune Response to SARS-CoV-2 Infection</p> . ImmunoTargets and Therapy, 2020, Volume 9, 111-114.	5.8	10
39	Mesenchymal Stem Cell/Multipotent Stromal Cell Augmentation of Wound Healing. American Journal of Pathology, 2020, 190, 1370-1381.	3.8	24
40	Adult Stem Cell Functioning in the Tumor Micro-Environment. International Journal of Molecular Sciences, 2019, 20, 2566.	4.1	19
41	A clinical decision support system learned from data to personalize treatment recommendations towards preventing breast cancer metastasis. PLoS ONE, 2019, 14, e0213292.	2.5	32
42	Focal segmental glomerulosclerosis ACTN4 mutants binding to actin: regulation by phosphomimetic mutations. Scientific Reports, 2019, 9, 15517.	3.3	9
43	Expression of E-cadherin and specific CXCR3 isoforms impact each other in prostate cancer. Cell Communication and Signaling, 2019, 17, 164.	6.5	3
44	A Model of Dormant-Emergent Metastatic Breast Cancer Progression Enabling Exploration of Biomarker Signatures. Molecular and Cellular Proteomics, 2018, 17, 619-630.	3.8	43
45	Tyro3-mediated phosphorylation of ACTN4 at tyrosines is FAK-dependent and decreases susceptibility to cleavage by m-Calpain. International Journal of Biochemistry and Cell Biology, 2018, 95, 73-84.	2.8	15
46	Liver â€~organ on a chip'. Experimental Cell Research, 2018, 363, 15-25.	2.6	165
47	The Pro-reparative Engine: Stem Cells Aid Healing by Dampening Inflammation. Current Pathobiology Reports, 2018, 6, 109-115.	3.4	1
48	Inflammatory cytokine IL-8/CXCL8 promotes tumour escape from hepatocyte-induced dormancy. British Journal of Cancer, 2018, 118, 566-576.	6.4	59
49	Biomarker identification for statin sensitivity of cancer cell lines. Biochemical and Biophysical Research Communications, 2018, 495, 659-665.	2.1	38
50	Concomitant attenuation of HMG-CoA reductase expression potentiates the cancer cell growth-inhibitory effect of statins and expands their efficacy in tumor cells with epithelial characteristics. Oncotarget, 2018, 9, 29304-29315.	1.8	20
51	Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Research, 2018, 20, 144.	5. O	130
52	Statins attenuate outgrowth of breast cancer metastases. British Journal of Cancer, 2018, 119, 1094-1105.	6.4	64
53	The great escape: How metastases of melanoma, and other carcinomas, avoid elimination. Experimental Biology and Medicine, 2018, 243, 1245-1255.	2.4	9
54	Herpes Simplex Virus-1 qPCR in the Diagnosis of Lower Respiratory Tract Infections in Organ Transplant Recipients and Critically III Patients. American Journal of Clinical Pathology, 2018, 150, 522-532.	0.7	4

#	Article	IF	CITATIONS
55	Conjugated equine estrogen and medroxyprogesterone acetate are associated with decreased risk of breast cancer relative to bioidentical hormone therapy and controls. PLoS ONE, 2018, 13, e0197064.	2.5	7
56	Lipophilic statins limit cancer cell growth and survival, via involvement of Akt signaling. PLoS ONE, 2018, 13, e0197422.	2.5	75
57	A systems perspective of heterocellular signaling. Essays in Biochemistry, 2018, 62, 607-617.	4.7	12
58	Biâ€directional Macrophageâ€Fibroblast Crosstalk Directs Wound Resolution Factors. FASEB Journal, 2018, 32, 414.2.	0.5	1
59	A Pathway to Personalizing Therapy for Metastases Using Liver-on-a-Chip Platforms. Stem Cell Reviews and Reports, 2017, 13, 364-380.	5.6	22
60	Integration of systems biology with organs-on-chips to humanize therapeutic development. Proceedings of SPIE, 2017, , .	0.8	4
61	A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Lab on A Chip, 2017, 17, 156-168.	6.0	67
62	Low Infection-Related Re-Admission Rates in a Retrospective of 4725 Children with Appendicitis Using a Clinical Pathway in a Tertiary Care Pediatric Center. Surgical Infections, 2017, 18, 894-903.	1.4	12
63	Tyro3 carboxyl terminal region confers stability and contains the autophosphorylation sites. Biochemical and Biophysical Research Communications, 2017, 490, 1074-1079.	2.1	3
64	Improved Transplanted Stem Cell Survival in a Polymer Gel Supplemented with Tenascin C Accelerates Healing and Reduces Scarring of Murine Skin Wounds. Cell Transplantation, 2017, 26, 103-113.	2.5	31
65	Distinct Osteomimetic Response of Androgenâ€Dependent and Independent Human Prostate Cancer Cells to Mechanical Action of Fluid Flow: Prometastatic Implications. Prostate, 2017, 77, 321-333.	2.3	16
66	MyD88-dependent inflammasome activation and autophagy inhibition contributes to Ehrlichia-induced liver injury and toxic shock. PLoS Pathogens, 2017, 13, e1006644.	4.7	38
67	Bi-directional exosome-driven intercommunication between the hepatic niche and cancer cells. Molecular Cancer, 2017, 16, 172.	19.2	55
68	Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring. Stem Cell Research and Therapy, 2017, 8, 193.	5.5	48
69	Friend turned foe: E-cadherin perversely protects micrometastases. Translational Andrology and Urology, 2017, 6, 338-340.	1.4	2
70	Epidermal Growth Factor Tethered to $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Tricalcium Phosphate Bone Scaffolds via a High-Affinity Binding Peptide Enhances Survival of Human Mesenchymal Stem Cells/Multipotent Stromal Cells in an Immune-Competent Parafascial Implantation Assay in Mice. Stem Cells Translational Medicine, 2016, 5, 1580-1586.	3.3	18
71	CXCL11 Expression by Keratinocytes Occurs Transiently Between Reaching Confluence and Cellular Compaction. Advances in Wound Care, 2016, 5, 517-526.	5.1	2
72	Liver metastases: Microenvironments and <i>ex-vivo </i> models. Experimental Biology and Medicine, 2016, 241, 1639-1652.	2.4	77

#	Article	IF	Citations
73	Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Research and Therapy, 2016, 7, 179.	5 . 5	66
74	Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells. BMC Cancer, 2016, 16, 419.	2.6	59
75	Liver protects metastatic prostate cancer from induced death by activating Eâ€cadherin signaling. Hepatology, 2016, 64, 1725-1742.	7.3	32
76	Pericytes: A newly recognized player in wound healing. Wound Repair and Regeneration, 2016, 24, 204-214.	3.0	77
77	Time series modeling of live-cell shape dynamics for image-based phenotypic profiling. Integrative Biology (United Kingdom), 2016, 8, 73-90.	1.3	53
78	Skin tissue repair: Matrix microenvironmental influences. Matrix Biology, 2016, 49, 25-36.	3.6	105
79	Differential regulation of pericyte function by the CXC receptor 3. Wound Repair and Regeneration, 2015, 23, 785-796.	3.0	8
80	Lung Epithelial Cells Induce Both Phenotype Alteration and Senescence in Breast Cancer Cells. PLoS ONE, 2015, 10, e0118060.	2.5	17
81	Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function. Science Signaling, 2015, 8, ra51.	3.6	25
82	Tenascin-C Signaling in melanoma. Cell Adhesion and Migration, 2015, 9, 125-130.	2.7	27
83	Use of ChemoFx® for Identification of Effective Treatments in Epithelial Ovarian Cancer. PLOS Currents, 2015, 7, .	1.4	6
84	CXCR3 in carcinoma progression. Histology and Histopathology, 2015, 30, 781-92.	0.7	54
85	Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Research and Therapy, 2014, 5, 140.	5.5	115
86	Matrikine and matricellular regulators of EGF receptor signaling on cancer cell migration and invasion. Laboratory Investigation, 2014, 94, 31-40.	3.7	49
87	The Mitogen-activated Protein (MAP) Kinases p38 and Extracellular Signal-regulated Kinase (ERK) Are Involved in Hepatocyte-mediated Phenotypic Switching in Prostate Cancer Cells. Journal of Biological Chemistry, 2014, 289, 11153-11161.	3.4	41
88	Engineering liver. Hepatology, 2014, 60, 1426-1434.	7.3	46
89	α-Actinin-4 Is Required for Amoeboid-type Invasiveness of Melanoma Cells. Journal of Biological Chemistry, 2014, 289, 32717-32728.	3.4	35
90	Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. British Journal of Cancer, 2014, 111, 2342-2350.	6.4	76

#	Article	IF	Citations
91	Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition. Breast Cancer Research and Treatment, 2014, 144, 551-560.	2.5	32
92	A microphysiological system model of therapy for liver micrometastases. Experimental Biology and Medicine, 2014, 239, 1170-1179.	2.4	48
93	Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis. Oncogene, 2014, 33, 2065-2074.	5.9	51
94	Modulation of Epidermal Growth Factor Stimulated ERK Phosphorylation and Cell Motility by Inositol Trisphosphate Kinase. Journal of Pharmaceutical Sciences and Pharmacology, 2014, 1, 160-164.	0.2	10
95	Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion. Scientific Reports, 2014, 4, 7593.	3.3	112
96	PKCδ Regulates Force Signaling during VEGF/CXCL4 Induced Dissociation of Endothelial Tubes. PLoS ONE, 2014, 9, e93968.	2.5	6
97	The Matrikine Tenascin-C Protects Multipotential Stromal Cells/Mesenchymal Stem Cells from Death Cytokines Such as FasL. Tissue Engineering - Part A, 2013, 19, 1972-1983.	3.1	45
98	Surface Tethered Epidermal Growth Factor Protects Proliferating and Differentiating Multipotential Stromal Cells from FasL-Induced Apoptosis. Stem Cells, 2013, 31, 104-116.	3.2	44
99	All-human microphysical model of metastasis therapy. Stem Cell Research and Therapy, 2013, 4, S11.	5.5	24
100	Modeling the Assembly of the Multiple Domains of \hat{l} ±-actinin-4 and Its Role in Actin Cross-linking. Biophysical Journal, 2013, 104, 705-715.	0.5	22
101	The carboxyl tail of alpha-actinin-4 regulates its susceptibility to m-calpain and thus functions in cell migration and spreading. International Journal of Biochemistry and Cell Biology, 2013, 45, 1051-1063.	2.8	15
102	Targeting tumor cell motility as a strategy against invasion and metastasis. Trends in Pharmacological Sciences, 2013, 34, 283-289.	8.7	171
103	Melanoma Cell Invasiveness Is Promoted at Least in Part by the Epidermal Growth Factor–Like Repeats of Tenascin-C. Journal of Investigative Dermatology, 2013, 133, 210-220.	0.7	28
104	The Dormancy Dilemma: Quiescence versus Balanced Proliferation. Cancer Research, 2013, 73, 3811-3816.	0.9	76
105	Modeling Boundary Conditions for Balanced Proliferation in Metastatic Latency. Clinical Cancer Research, 2013, 19, 1063-1070.	7.0	25
106	Pericyte Regulation of Vascular Remodeling Through the CXC Receptor 3. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2818-2829.	2.4	63
107	Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context. Molecular and Cellular Proteomics, 2013, 12, 3704-3718.	3.8	9
108	PKCδLocalization at the Membrane Increases Matrix Traction Force Dependent on PLCγ1/EGFR Signaling. PLoS ONE, 2013, 8, e77434.	2.5	4

#	Article	IF	CITATIONS
109	The Beginning of the End: CXCR3 Signaling in Late-Stage Wound Healing. Advances in Wound Care, 2012, 1, 244-248.	5.1	27
110	Production of Reactive Oxygen Species by Multipotent Stromal Cells/Mesenchymal Stem Cells upon Exposure to Fas Ligand. Cell Transplantation, 2012, 21, 2171-2187.	2.5	42
111	Transplanted Fibroblasts Prevents Dysfunctional Repair in a Murine CXCR3-Deficient Scarring Model. Cell Transplantation, 2012, 21, 919-931.	2.5	30
112	Workflow Organization in Pathology. Clinics in Laboratory Medicine, 2012, 32, 601-622.	1.4	15
113	Preface. Clinics in Laboratory Medicine, 2012, 32, ix-x.	1.4	2
114	Skin Wound Healing and Scarring: Fetal Wounds and Regenerative Restitution. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 325-333.	3.6	122
115	2D protrusion but not motility predicts growth factor–induced cancer cell migration in 3D collagen. Journal of Cell Biology, 2012, 197, 721-729.	5. 2	90
116	Nuclear Kaiso Indicates Aggressive Prostate Cancers and Promotes Migration and Invasiveness of Prostate Cancer Cells. American Journal of Pathology, 2012, 181, 1836-1846.	3.8	58
117	Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer and Metastasis Reviews, 2012, 31, 469-478.	5.9	285
118	An IP-10 (CXCL10)-Derived Peptide Inhibits Angiogenesis. PLoS ONE, 2012, 7, e40812.	2.5	71
119	Partial Mesenchymal to Epithelial Reverting Transition in Breast and Prostate Cancer Metastases. Cancer Microenvironment, 2012, 5, 19-28.	3.1	139
120	Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Molecular Cancer, 2012, 11, 3.	19.2	113
121	Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical and Experimental Metastasis, 2012, 29, 39-50.	3.3	77
122	Adult Stem Cell Survival Strategies. , 2012, , 383-404.		1
123	Transplantation of mesenchymal stem cells and fibroblasts in a bioâ€compatible matrix corrects defective dermal remodeling. FASEB Journal, 2012, 26, 399.3.	0.5	0
124	Cellular confluence and cohesion regulates CXCL11/IP9 expression during keratinocyte reâ€epithelialization. FASEB Journal, 2012, 26, 56.3.	0.5	0
125	Laboratory medicine: a view to the future of diagnostics and training. Rinsho Byori the Japanese Journal of Clinical Pathology, 2012, 60, 312-20.	0.1	0
126	Calpains as potential anti-cancer targets. Expert Opinion on Therapeutic Targets, 2011, 15, 309-323.	3.4	88

#	Article	IF	Citations
127	Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Frontiers in Bioscience - Landmark, 2011, 16, 815.	3.0	71
128	Controlling multipotent stromal cell migration by integrating "course-graining―materials and "fine-tuning―small molecules via decision tree signal-response modeling. Biomaterials, 2011, 32, 7524-7531.	11.4	17
129	Matrix control of scarring. Cellular and Molecular Life Sciences, 2011, 68, 1871-1881.	5.4	50
130	Signaling Network State Predicts Twist-Mediated Effects on Breast Cell Migration Across Diverse Growth Factor Contexts. Molecular and Cellular Proteomics, 2011, 10, M111.008433.	3.8	27
131	Hyaluronan Facilitates Transforming Growth Factor- \hat{l}^2 1-dependent Proliferation via CD44 and Epidermal Growth Factor Receptor Interaction. Journal of Biological Chemistry, 2011, 286, 17618-17630.	3.4	103
132	Biology of Metastatic Liver Tumors. Molecular Pathology Library, 2011, , 859-866.	0.1	2
133	Abstract 3357: Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. , $2011, , .$		1
134	The effects of decorin and HGF-primed vocal fold fibroblasts in vitro and ex vivo in a porcine model of vocal fold scarring. Laryngoscope, 2010, 120, 2247-2257.	2.0	14
135	Calpain., 2010,, 999-1008.		0
136	\hat{l}_{\pm} -Actinin-4 Is Essential for Maintaining the Spreading, Motility and Contractility of Fibroblasts. PLoS ONE, 2010, 5, e13921.	2.5	70
137	m-calpain Activation Is Regulated by Its Membrane Localization and by Its Binding to Phosphatidylinositol 4,5-Bisphosphate*. Journal of Biological Chemistry, 2010, 285, 33549-33566.	3.4	75
138	Phosphorylation of \hat{l}_{\pm} -Actinin 4 upon Epidermal Growth Factor Exposure Regulates Its Interaction with Actin. Journal of Biological Chemistry, 2010, 285, 2591-2600.	3.4	65
139	Profilin1 regulates PI(3,4)P ₂ and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21547-21552.	7.1	86
140	Epidermal Growth Factor (EGF) Treatment on Multipotential Stromal Cells (MSCs). Possible Enhancement of Therapeutic Potential of MSC. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	113
141	Preface. Clinics in Laboratory Medicine, 2010, 30, xiii-xiv.	1.4	0
142	Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Molecular Cancer, 2010, 9, 179.	19.2	334
143	Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures. Journal of Proteome Research, 2010, 9, 3656-3663.	3.7	28
144	Non-steroidal anti-inflammatory drugs inhibit calpain activity and membrane localization of calpain 2 protease. International Journal of Biochemistry and Cell Biology, 2010, 42, 2030-2036.	2.8	13

#	Article	IF	CITATIONS
145	Lack of CXC Chemokine Receptor 3 Signaling Leads to Hypertrophic and Hypercellular Scarring. American Journal of Pathology, 2010, 176, 1743-1755.	3.8	67
146	Aging Fibroblasts Resist Phenotypic Maturation Because of Impaired Hyaluronan-Dependent CD44/Epidermal Growth Factor Receptor Signaling. American Journal of Pathology, 2010, 176, 1215-1228.	3.8	66
147	Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Research and Therapy, 2010, 1, 32.	5.5	237
148	Intercellular Transfer of Proteins as Identified by Stable Isotope Labeling of Amino Acids in Cell Culture. Journal of Biological Chemistry, 2010, 285, 6285-6297.	3.4	17
149	Matrix tethered EGF promotes survival of MSC secondary to preferential activation of surfaceâ€restricted signaling pathways. FASEB Journal, 2010, 24, 38.6.	0.5	0
150	NSAIDs Inhibit Activity and Reduce Surface Expression of Calpain Proteases. FASEB Journal, 2010, 24, 583.2.	0.5	0
151	IP-10 induces dissociation of newly formed blood vessels. Journal of Cell Science, 2009, 122, 2064-2077.	2.0	130
152	Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Experimental Cell Research, 2009, 315, 2963-2973.	2.6	49
153	Profilin†overexpression upregulates PTEN and suppresses AKT activation in breast cancer cells. Journal of Cellular Physiology, 2009, 218, 436-443.	4.1	49
154	Loss of profilinâ€1 expression enhances breast cancer cell motility by Ena/VASP proteins. Journal of Cellular Physiology, 2009, 219, 354-364.	4.1	75
155	Sustained epidermal growth factor receptor levels and activation by tethered ligand binding enhances osteogenic differentiation of multiâ€potent marrow stromal cells. Journal of Cellular Physiology, 2009, 221, 306-317.	4.1	64
156	The influence of tethered epidermal growth factor on connective tissue progenitor colony formation. Biomaterials, 2009, 30, 4629-4638.	11.4	35
157	Multipathway Kinase Signatures of Multipotent Stromal Cells Are Predictive for Osteogenic Differentiation. Stem Cells, 2009, 27, 2804-2814.	3.2	45
158	Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3. Wound Repair and Regeneration, 2009, 17, 34-41.	3.0	60
159	IPâ€10 fragment is the functional motif that blocks endothelial cell motility and vessel formation. FASEB Journal, 2009, 23, 116.7.	0.5	1
160	Inhibition of Epidermal Growth Factor stimulated ERK phosphorylation by inositol trisphosphate kinase inhibitor. FASEB Journal, 2009, 23, 889.1.	0.5	0
161	E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clinical and Experimental Metastasis, 2008, 25, 621-628.	3.3	314
162	Cell surface restriction of EGFR by a tenascin cytotactinâ€encoded EGFâ€like repeat is preferential for motilityâ€related signaling. Journal of Cellular Physiology, 2008, 214, 504-512.	4.1	70

#	Article	IF	Citations
163	057†Activation of CXCR 3 Inhibits Endothelial Tube Formation Through the Modulation of M-Calpain. Wound Repair and Regeneration, 2008, 13, A4-A27.	3.0	O
164	Epidermal growth factor protects fibroblasts from apoptosis via PI3 kinase and Rac signaling pathways. Wound Repair and Regeneration, 2008, 16, 551-558.	3.0	13
165	Modulation of osteoblast gap junction connectivity by serum, TNFÎ \pm , and TRAIL. Experimental Cell Research, 2008, 314, 297-308.	2.6	28
166	ELR-Negative CXC Chemokine CXCL11 (IP-9/I-TAC) Facilitates Dermal and Epidermal Maturation during Wound Repair. American Journal of Pathology, 2008, 173, 643-652.	3.8	46
167	Differentiation of Bone Marrow Mesenchymal Stem Cells into the Smooth Muscle Lineage by Blocking ERK/MAPK Signaling Pathway. Stem Cells and Development, 2008, 17, 897-908.	2.1	91
168	Epidermal Growth Factor–induced Enhancement of Glioblastoma Cell Migration in 3D Arises from an Intrinsic Increase in Speed But an Extrinsic Matrix- and Proteolysis-dependent Increase in Persistence. Molecular Biology of the Cell, 2008, 19, 4249-4259.	2.1	88
169	Combined Inhibition of PLCγ-1 and c-Src Abrogates Epidermal Growth Factor Receptor–Mediated Head and Neck Squamous Cell Carcinoma Invasion. Clinical Cancer Research, 2008, 14, 4336-4344.	7.0	38
170	Eâ€cadherin reâ€expression in invasive breast cancer cells as a putative marker for tumor cell dormancy modeled by infiltration into hepatocyte spheroids. FASEB Journal, 2008, 22, 470.7.	0.5	0
171	Profilin-1 is a negative regulator of mammary carcinoma aggressiveness. British Journal of Cancer, 2007, 97, 1361-1371.	6.4	99
172	EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. Journal of Cell Science, 2007, 120, 3688-3699.	2.0	82
173	Necessity of inositol (1,4,5)-trisphosphate receptor 1 and \hat{l} 4-calpain in NO-induced osteoclast motility. Journal of Cell Science, 2007, 120, 2884-2894.	2.0	28
174	Pituitary glycoprotein hormone receptors in non-endocrine organs. Trends in Endocrinology and Metabolism, 2007, 18, 227-233.	7.1	15
175	Delayed and Deficient Dermal Maturation in Mice Lacking the CXCR3 ELR-Negative CXC Chemokine Receptor. American Journal of Pathology, 2007, 171, 484-495.	3.8	97
176	The Goals of Resident Training inÂLaboratory Medicine in Combined Anatomic Pathology/Clinical Pathology Programs: An Overview. Clinics in Laboratory Medicine, 2007, 27, 229-240.	1.4	7
177	Novel Threeâ€Dimensional Organotypic Liver Bioreactor to Directly Visualize Early Events in Metastatic Progression. Advances in Cancer Research, 2007, 97, 225-246.	5.0	74
178	Tenascin cytotactin epidermal growth factor-like repeat binds epidermal growth factor receptor with low affinity. Journal of Cellular Physiology, 2007, 211, 748-758.	4.1	58
179	The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models. Biomaterials, 2007, 28, 3977-3986.	11.4	98
180	PLCÎ ³ contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene, 2007, 26, 3020-3026.	5.9	55

#	Article	IF	CITATIONS
181	Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 2007, 96, 1246-1252.	6.4	117
182	Decision tree modeling predicts effects of inhibiting contractility signaling on cell motility. BMC Systems Biology, 2007, 1, 9.	3.0	24
183	Tethered Epidermal Growth Factor Provides a Survival Advantage to Mesenchymal Stem Cells. Stem Cells, 2007, 25, 1241-1251.	3.2	258
184	Calpain., 2007,, 1-8.		0
185	Differentiation of bone marrow mesenchymal stem cells towards the smooth muscle cell lineage by blocking Elkâ€1 signaling and overexpression of myocardin. FASEB Journal, 2007, 21, A748.	0.5	O
186	Demethylation of the Eâ€cadherin promoter driven by hepatocytes allows for cell fateâ€determining signals in invasive breast cancer cells. FASEB Journal, 2007, 21, A77.	0.5	0
187	Motility Signaled From the EGF Receptor and Related Systems. , 2006, 327, 159-178.		5
188	CSR1 Suppresses Tumor Growth and Metastasis of Prostate Cancer. American Journal of Pathology, 2006, 168, 597-607.	3.8	50
189	Multiple signaling pathways mediate compaction of collagen matrices by EGF-stimulated fibroblasts. Experimental Cell Research, 2006, 312, 1970-1982.	2.6	22
190	Protein kinase Cl´ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells. Biochemical and Biophysical Research Communications, 2006, 343, 848-856.	2.1	55
191	The challenge of training pathologists in the 21st century. Human Pathology, 2006, 37, 932-933.	2.0	10
192	Curriculum content and evaluation of resident competency in clinical pathology (laboratory) Tj ETQq0 0 0 rgBT /	Overlock 1	0 <u>Tf</u> 50 302 ⁻
193	Primed fibroblasts and exogenous decorin: Potential treatments for subacute vocal fold scar. Otolaryngology - Head and Neck Surgery, 2006, 135, 937-945.	1.9	32
194	Motility in Tumor Invasion and Metastasis — An Overview. , 2006, , 1-23.		3
195	Cell Motility in Prostate Tumor Invasion and Metastasis. , 2006, , 301-338.		1
196	Gene expression patterns in isolated keloid fibroblasts. Wound Repair and Regeneration, 2006, 14, 463-470.	3.0	59
197	Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix. Biomaterials, 2006, 27, 4304-4314.	11.4	61
198	Epidermal Growth Factor as a Candidate for Ex Vivo Expansion of Bone Marrow–Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 686-695.	3.2	245

#	Article	IF	CITATIONS
199	Counterpoint: Developing a Clinical Pathology Curriculum to Meet Current and Future Needs. Clinical Chemistry, 2006, 52, 971-972.	3.2	10
200	Spatial Localization of m-Calpain to the Plasma Membrane by Phosphoinositide Biphosphate Binding during Epidermal Growth Factor Receptor-Mediated Activation. Molecular and Cellular Biology, 2006, 26, 5481-5496.	2.3	105
201	Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10889-10894.	7.1	1,029
202	Curriculum Content and Evaluation of Resident Competency in Clinical Pathology (Laboratory) Tj ETQq0 0 0 rgB	Г / <u>3.2</u>	₹ 10 Tf 50 62
203	IP-10 Blocks Vascular Endothelial Growth Factor-Induced Endothelial Cell Motility and Tube Formation via Inhibition of Calpain. Circulation Research, 2006, 98, 617-625.	4.5	192
204	STAT3 is required but not sufficient for EGF receptor-mediated migration and invasion of human prostate carcinoma cell lines. British Journal of Cancer, 2006, 95, 164-171.	6.4	47
205	Erythropoietin-mediated activation of JAK-STAT signaling contributes to cellular invasion in head and neck squamous cell carcinoma. Oncogene, 2005, 24, 4442-4449.	5.9	157
206	Chemokine receptor 7 activates phosphoinositide-3 kinase-mediated invasive and prosurvival pathways in head and neck cancer cells independent of EGFR. Oncogene, 2005, 24, 5897-5904.	5.9	90
207	Modeling of signal-response cascades using decision tree analysis. Bioinformatics, 2005, 21, 2027-2035.	4.1	57
208	Luteinising hormone-releasing hormone analogue reverses the cell adhesion profile of EGFR overexpressing DU-145 human prostate carcinoma subline. British Journal of Cancer, 2005, 92, 366-375.	6.4	41
209	Parsing ERK Activation Reveals Quantitatively Equivalent Contributions from Epidermal Growth Factor Receptor and HER2 in Human Mammary Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 6157-6169.	3.4	63
210	Interferon-Inducible Protein 9 (CXCL11)-Induced Cell Motility in Keratinocytes Requires Calcium Flux-Dependent Activation of $1\frac{1}{4}$ -Calpain. Molecular and Cellular Biology, 2005, 25, 1922-1941.	2.3	75
211	Calpain Proteases in Cell Adhesion and Motility. International Review of Cytology, 2005, 245, 1-16.	6.2	74
212	Epidermal Growth Factor Induces Fibroblast Contractility and Motility via a Protein Kinase C Î-dependent Pathway. Journal of Biological Chemistry, 2004, 279, 14551-14560.	3.4	127
213	Differential in vitro effects of chemotherapeutic agents on primary cultures of human ovarian carcinoma. International Journal of Gynecological Cancer, 2004, 14, 607-615.	2.5	7
214	Keloid fibroblast responsiveness to epidermal growth factor and activation of downstream intracellular signaling pathways. Wound Repair and Regeneration, 2004, 12, 183-192.	3.0	53
215	Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair and Regeneration, 2004, 12, 262-268.	3.0	155
216	136 Celosia Argentea Linn. Leaf Extract Improves Wound Healing in Rat Burn Wound Model. Wound Repair and Regeneration, 2004, 12, A35-A35.	3.0	2

#	Article	IF	CITATIONS
217	139 Gene Array Profiling of Keloid Fibroblasts to Identify the Target Genes for Therapeutic Evaluations. Wound Repair and Regeneration, 2004, 12, A36-A36.	3.0	O
218	Celosia argentea Linn. leaf extract improves wound healing in a rat burn wound model. Wound Repair and Regeneration, 2004, 12, 618-625.	3.0	46
219	Epidermal Growth Factor Activates m-Calpain (Calpain II), at Least in Part, by Extracellular Signal-Regulated Kinase-Mediated Phosphorylation. Molecular and Cellular Biology, 2004, 24, 2499-2512.	2.3	250
220	DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Experimental Cell Research, 2004, 299, 91-100.	2.6	52
221	Expression of human, mouse, and rat m-calpains in Escherichia coli and in murine fibroblasts. Protein Expression and Purification, 2004, 33, 246-255.	1.3	5
222	Webcasting pathology department conferences in a geographically distributed medical center. Human Pathology, 2004, 35, 790-797.	2.0	12
223	Attraction or Repulsion: A Matter of Individual Taste?. Science Signaling, 2004, 2004, pe47-pe47.	3.6	5
224	Phospholipase C-gamma1 in tumor progression. Clinical and Experimental Metastasis, 2003, 20, 285-290.	3.3	110
225	Glu-Leu-Arg-Negative CXC Chemokine Interferon γ Inducible Protein-9 As a Mediator of Epidermal–Dermal Communication During Wound Repair. Journal of Investigative Dermatology, 2003, 120, 1110-1117.	0.7	53
226	Absence of inhibition of cutaneous wound healing in mice by oral doxycycline. Wound Repair and Regeneration, 2003, 11, 373-379.	3.0	27
227	EVIDENCE FOR THE ISOLATION, GROWTH, AND CHARACTERIZATION OF MALIGNANT CELLS IN PRIMARY CULTURES OF HUMAN TUMORS. In Vitro Cellular and Developmental Biology - Animal, 2003, 39, 63.	1.5	21
228	Glutamate substitutions at a PKA consensus site are consistent with inactivation of calpain by phosphorylation. FEBS Letters, 2003, 542, 115-118.	2.8	35
229	Directional motility induced by epidermal growth factor requires Cdc42. Experimental Cell Research, 2003, 287, 47-56.	2.6	46
230	Aging-related attenuation of EGF receptor signaling is mediated in part by increased protein tyrosine phosphatase activity. Experimental Cell Research, 2003, 289, 359-367.	2.6	38
231	Quantitative Parsing of Cell Multi-tasking in Wound Repair and Tissue Morphogenesis. Biophysical Journal, 2003, 84, 3499-3500.	0.5	4
232	Calpain., 2003,, 105-111.		1
233	Calpain-2 as a target for limiting prostate cancer invasion. Cancer Research, 2003, 63, 4632-40.	0.9	89
234	Epidermal growth factor receptor-stimulated activation of phospholipase Cgamma-1 promotes invasion of head and neck squamous cell carcinoma. Cancer Research, 2003, 63, 5629-35.	0.9	83

#	Article	IF	Citations
235	Growth Factor-Induced Cell Motility in Tumor Invasion. Acta Oncológica, 2002, 41, 124-130.	1.8	126
236	Activation of m-Calpain (Calpain II) by Epidermal Growth Factor Is Limited by Protein Kinase A Phosphorylation of m-Calpain. Molecular and Cellular Biology, 2002, 22, 2716-2727.	2.3	162
237	19 Calpain proteases in prostate carcinoma. Handbook of Immunohistochemistry and in Situ Hybridization of Human Carcinomas, 2002, 2, 463-469.	0.0	0
238	Motility is rate-limiting for invasion of bladder carcinoma cell lines. International Journal of Biochemistry and Cell Biology, 2002, 34, 762-775.	2.8	22
239	Distribution of gelsolin and phosphoinositol 4,5-bisphosphate in lamellipodia during EGF-induced motility. International Journal of Biochemistry and Cell Biology, 2002, 34, 776-790.	2.8	53
240	Cutting to the chase: calpain proteases in cell motility. Trends in Cell Biology, 2002, 12, 46-54.	7.9	350
241	EBV-expressing AGS gastric carcinoma cell sublines present increased motility and invasiveness. International Journal of Cancer, 2002, 99, 644-651.	5.1	34
242	Epidermal growth factor induces acute matrix contraction and subsequent calpain-modulated relaxation. Wound Repair and Regeneration, 2002, 10, 67-76.	3.0	37
243	Signalling shortcuts: cell-surface receptors in the nucleus?. Nature Reviews Molecular Cell Biology, 2002, 3, 697-702.	37.0	137
244	The EGF Receptor Signaling System. Growth Hormone, 2002, , 57-79.	0.2	2
245	Luteinizing hormone-releasing hormone agonist limits DU-145 prostate cancer growth by attenuating epidermal growth factor receptor signaling. Clinical Cancer Research, 2002, 8, 1251-7.	7.0	31
246	Tumor invasion as dysregulated cell motility. Seminars in Cancer Biology, 2001, 11, 105-117.	9.6	153
247	Dolichol-phosphate-mannose-3 (DPM3)/prostin-1 is a novel phospholipase C-Î ³ regulated gene negatively associated with prostate tumor invasion. Oncogene, 2001, 20, 2781-2790.	5.9	30
248	Getting a grip: new insights for cell adhesion and traction. Nature Cell Biology, 2001, 3, E110-E112.	10.3	19
249	Phosphatidylinositol-4-phosphate 5-Kinase- $1\hat{l}^2$ Is Essential for Epidermal Growth Factor Receptor-mediated Endocytosis. Journal of Biological Chemistry, 2001, 276, 47212-47216.	3.4	65
250	Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. Journal of Cell Biology, 2001, 154, 459-468.	5.2	255
251	Membrane Proximal ERK Signaling Is Required for M-calpain Activation Downstream of Epidermal Growth Factor Receptor Signaling. Journal of Biological Chemistry, 2001, 276, 23341-23348.	3.4	186
252	Epidermal Growth Factor (EGF) Receptor Kinase-independent Signaling by EGF. Journal of Biological Chemistry, 2001, 276, 15554-15560.	3.4	56

#	Article	IF	CITATIONS
253	Mathematical modeling of epidermal growth factor receptor signaling through the phospholipase C pathway: Mechanistic insights and predictions for molecular interventions. Biotechnology and Bioengineering, 2000, 70, 225-238.	3.3	41
254	Epidermal Growth Factor Receptor Activation of Calpain Is Required for Fibroblast Motility and Occurs via an ERK/MAP Kinase Signaling Pathway. Journal of Biological Chemistry, 2000, 275, 2390-2398.	3.4	240
255	Localized Biphasic Changes in Phosphatidylinositol-4,5-Bisphosphate at Sites of Phagocytosis. Journal of Cell Biology, 2000, 151, 1353-1368.	5.2	489
256	Aging Fibroblasts Present Reduced Epidermal Growth Factor (EGF) Responsiveness Due to Preferential Loss of EGF Receptors. Journal of Biological Chemistry, 2000, 275, 19343-19351.	3.4	107
257	Epidermal Growth Factor and Membrane Trafficking. Journal of Cell Biology, 2000, 151, 539-550.	5.2	218
258	The Nuclear Accumulation of a Variant Epidermal Growth Factor Receptor (EGFR) Lacking the Transmembrane Domain Requires Coexpression of a Full-Length EGFR. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 3, 8-14.	1.6	39
259	Inhibition of Phospholipase C-Î ³ 1 Activation Blocks Glioma Cell Motility and Invasion of Fetal Rat Brain Aggregates. Neurosurgery, 1999, 44, 568-577.	1.1	62
260	A Differential Requirement for the COOH-terminal Region of the Epidermal Growth Factor (EGF) Receptor in Amphiregulin and EGF Mitogenic Signaling. Journal of Biological Chemistry, 1999, 274, 8900-8909.	3.4	21
261	Internalized Epidermal Growth Factor Receptors Participate in the Activation of p21 in Fibroblasts. Journal of Biological Chemistry, 1999, 274, 34350-34360.	3.4	134
262	Ip-10 Inhibits Epidermal Growth Factor–Induced Motility by Decreasing Epidermal Growth Factor Receptor–Mediated Calpain Activity. Journal of Cell Biology, 1999, 146, 243-254.	5.2	127
263	Effect of Epidermal Growth Factor Receptor Internalization on Regulation of the Phospholipase $C-\hat{l}^31$ Signaling Pathway. Journal of Biological Chemistry, 1999, 274, 8958-8965.	3.4	104
264	Shaping up for shipping out: PLC? signaling of morphology changes in EGF-stimulated fibroblast migration. Cytoskeleton, 1999, 44, 227-233.	4.4	81
265	EGF receptor. International Journal of Biochemistry and Cell Biology, 1999, 31, 637-643.	2.8	882
266	Tumor Invasion: Role of Growth Factor-Induced Cell Motility. Advances in Cancer Research, 1999, 78, 31-101.	5.0	277
267	Biophysical Integration of Effects of Epidermal Growth Factor and Fibronectin on Fibroblast Migration. Biophysical Journal, 1999, 76, 2814-2823.	0.5	146
268	Introduction to cell motility. Microscopy Research and Technique, 1998, 43, 357-357.	2.2	1
269	Epidermal growth factor receptor-mediated motility in fibroblasts. , 1998, 43, 395-411.		87
270	Treatment of human prostate cancer cells with dolastatin 10, a peptide isolated from a marine shell-less mollusc., 1998, 34, 175-181.		38

#	Article	IF	Citations
271	Comparative mitogenic potencies of EGF and TGFα and their dependence on receptor-limitation versus ligand-limitation. Medical and Biological Engineering and Computing, 1998, 36, 499-507.	2.8	20
272	EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLC \hat{l}^3 signaling pathway. Journal of Cell Science, 1998, 111, 615-624.	2.0	210
273	Epidermal Growth Factor Induces CD44 Gene Expression through a Novel Regulatory Element in Mouse Fibroblasts. Journal of Biological Chemistry, 1997, 272, 14139-14146.	3.4	38
274	Sickle cell acute chest syndrome associated with parvovirus B19 infection: Case series and review. , 1996, 51 , $207-213$.		45
275	Engineering dynamics of growth factors and other therapeutic ligands. , 1996, 52, 61-80.		12
276	Receptor-mediated effects on ligand availability influence relative mitogenic potencies of epidermal growth factor and transforming growth factor \hat{l}_{\pm} , 1996, 166, 512-522.		58
277	EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clinical and Experimental Metastasis, 1996, 14, 409-418.	3.3	117
278	Engineering epidermal growth factor for enhanced mitogenic potency. Nature Biotechnology, 1996, 14, 1696-1699.	17.5	97
279	STAT Activation by Epidermal Growth Factor (EGF) and Amphiregulin. Journal of Biological Chemistry, 1996, 271, 9185-9188.	3.4	139
280	In vitro invasiveness of DU-145 human prostate carcinoma cells is modulated by EGF receptor-mediated signals. Clinical and Experimental Metastasis, 1995, 13, 407-419.	3.3	101
281	Epidermal growth factor (EGF) receptor carboxy-terminal domains are required for EGF-induced glucose transport in transgenic 3T3-L1 adipocytes. Endocrinology, 1995, 136, 431-439.	2.8	9
282	Epidermal growth factor receptor-mediated cell motility: phospholipase C activity is required, but mitogen-activated protein kinase activity is not sufficient for induced cell movement Journal of Cell Biology, 1994, 127, 847-857.	5.2	307
283	Alteration of the Proliferative Response of Fibroblasts Expressing Internalization-Deficient Epidermal Growth Factor (EGF) receptors Is Altered via Differential EGF Depletion Effects. Biotechnology Progress, 1994, 10, 377-384.	2.6	48
284	Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology, 1991, 13, 15-20.	7.3	116
285	Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology, 1991, 13, 15-20.	7.3	13
286	The epidermal growth factor receptor and its ligands. Cancer Treatment and Research, 1989, 47, 143-168.	0.5	9
287	Receptors for the complement C3d component and the Epstein-Barr virus are quantitatively coexpressed on a series of B-cell lines and their derived somatic cell hybrids. Cellular Immunology, 1982, 72, 263-276.	3.0	20
288	Quantitative Comparison of Epstein-Barr Virus Receptor Expression on slgM and slgG Cell Lines and B-cell Lymphoma Biopsies. Differentiation, 1982, 22, 113-119.	1.9	7

ALAN WELLS

#	Article	IF	CITATION
289	A microassay for quantitatively detecting the epstein-barr virus receptor on single cells utilizing flow cytometry. Journal of Virological Methods, 1981, 3, 127-136.	2.1	7
290	Epstein-Barr Virus Receptor Expression is Correlated to Cell Cycle Phase. Journal of Receptors and Signal Transduction, 1981, 2, 285-298.	1.2	12
291	Cell Surface Glycoprotein Patterns of Two EBV-Negative Lines and Their EBV Converted Sublines. Intervirology, 1981, 16, 142-148.	2.8	7
292	Difference in viral binding between two epstein-barr virus substrains to a spectrum of receptor-positive target cells. International Journal of Cancer, 1981, 27, 303-309.	5.1	14