
## Urs Jenal

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179330/publications.pdf Version: 2024-02-01



LIDS LENAL

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Combining CRISPRi and metabolomics for functional annotation of compound libraries. Nature Chemical Biology, 2022, 18, 482-491.                                                                            | 8.0  | 33        |
| 2  | Photoaffinity Capture Compounds to Profile the Magic Spot Nucleotide Interactomes**. Angewandte Chemie - International Edition, 2022, 61, .                                                                | 13.8 | 11        |
| 3  | Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus. Nature Microbiology, 2021, 6, 59-72.                                     | 13.3 | 23        |
| 4  | Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas<br>aeruginosa Infections. MBio, 2021, 12, .                                                                         | 4.1  | 59        |
| 5  | Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli. Nature Communications, 2021, 12, 3204.                                         | 12.8 | 13        |
| 6  | Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa. Methods<br>in Molecular Biology, 2021, 2357, 161-175.                                                            | 0.9  | 2         |
| 7  | The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or<br>Double Antibiotic Treatment. Methods in Molecular Biology, 2021, 2357, 177-194.                          | 0.9  | 1         |
| 8  | A New Sugar for an Old Phage: a c-di-GMP-Dependent Polysaccharide Pathway Sensitizes <i>Escherichia coli</i> for Bacteriophage Infection. MBio, 2021, 12, e0324621.                                        | 4.1  | 15        |
| 9  | Surface Sensing and Adaptation in Bacteria. Annual Review of Microbiology, 2020, 74, 735-760.                                                                                                              | 7.3  | 49        |
| 10 | Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases. Journal of Bacteriology,<br>2020, 202, .                                                                                         | 2.2  | 11        |
| 11 | Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus. MBio, 2020, 11, .                                                     | 4.1  | 15        |
| 12 | Hybrid histidine kinase activation by cyclic di-GMP–mediated domain liberation. Proceedings of the<br>National Academy of Sciences of the United States of America, 2020, 117, 1000-1008.                  | 7.1  | 28        |
| 13 | Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17211-17220. | 7.1  | 20        |
| 14 | Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter.<br>Nature Communications, 2020, 11, 816.                                                              | 12.8 | 38        |
| 15 | Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nature Metabolism,<br>2020, 2, 153-166.                                                                                     | 11.9 | 34        |
| 16 | In situ structure of the <i>Caulobacter crescentus</i> flagellar motor and visualization of binding of a CheYâ€homolog. Molecular Microbiology, 2020, 114, 443-453.                                        | 2.5  | 22        |
| 17 | Tad Pili Play a Dynamic Role in Caulobacter crescentus Surface Colonization. MBio, 2019, 10, .                                                                                                             | 4.1  | 44        |
| 18 | Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019,<br>17, 441-448.                                                                                      | 28.6 | 748       |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Surface-Induced Asymmetric Program Promotes Tissue Colonization by Pseudomonas aeruginosa.<br>Cell Host and Microbe, 2019, 25, 140-152.e6.                                                   | 11.0 | 127       |
| 20 | Functionalized Prolineâ€Rich Peptides Bind the Bacterial Second Messenger câ€diâ€GMP. Angewandte Chemie<br>- International Edition, 2018, 57, 7729-7733.                                       | 13.8 | 23        |
| 21 | Functionalized Prolineâ€Rich Peptides Bind the Bacterial Second Messenger câ€diâ€GMP. Angewandte<br>Chemie, 2018, 130, 7855-7859.                                                              | 2.0  | 3         |
| 22 | A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress<br>Response and Development in Alphaproteobacteria. MBio, 2018, 9, .                           | 4.1  | 27        |
| 23 | Cyclic di-GMP: second messenger extraordinaire. Nature Reviews Microbiology, 2017, 15, 271-284.                                                                                                | 28.6 | 706       |
| 24 | Cohesive Properties of the <i>Caulobacter crescentus</i> Holdfast Adhesin Are Regulated by a Novel<br>c-di-GMP Effector Protein. MBio, 2017, 8, .                                              | 4.1  | 29        |
| 25 | Second messenger–mediated tactile response by a bacterial rotary motor. Science, 2017, 358, 531-534.                                                                                           | 12.6 | 129       |
| 26 | Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful<br>Tool to Identify Novel Effector Proteins. Methods in Molecular Biology, 2017, 1657, 361-376. | 0.9  | 4         |
| 27 | BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation. MBio, 2017, 8, .                                                                              | 4.1  | 38        |
| 28 | Quorum-Quenching Human Designer Cells for Closed-Loop Control of <i>Pseudomonas<br/>aeruginosa</i> Biofilms. Nano Letters, 2017, 17, 5043-5050.                                                | 9.1  | 26        |
| 29 | LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nature Microbiology, 2017, 2, 16184.                                             | 13.3 | 94        |
| 30 | Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. ELife, 2017, 6, .                                                                | 6.0  | 62        |
| 31 | High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in<br>Burkholderia cenocepacia H111. Microbiology (United Kingdom), 2017, 163, 754-764.             | 1.8  | 34        |
| 32 | Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.<br>Science Advances, 2016, 2, e1600823.                                                      | 10.3 | 69        |
| 33 | Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers. Journal of<br>Bacteriology, 2016, 198, 15-26.                                                           | 2.2  | 127       |
| 34 | Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli.<br>Journal of Bacteriology, 2016, 198, 448-462.                                            | 2.2  | 48        |
| 35 | An Extended Cyclic Di-GMP Network in the Predatory Bacterium Bdellovibrio bacteriovorus. Journal of Bacteriology, 2016, 198, 127-137.                                                          | 2.2  | 25        |
| 36 | Systematic Nomenclature for GGDEF and EAL Domain-Containing Cyclic Di-GMP Turnover Proteins of<br>Escherichia coli. Journal of Bacteriology, 2016, 198, 7-11.                                  | 2.2  | 96        |

Urs Jenal

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility. PLoS Genetics, 2016, 12, e1006354.                                                                                          | 3.5  | 57        |
| 38 | Capture Compound Mass Spectrometry - A Powerful Tool to Identify Novel c-di-GMP Effector Proteins.<br>Journal of Visualized Experiments, 2015, , .                                                                                                           | 0.3  | 14        |
| 39 | Bacteria in the CF Lung: Isolation Drives Diversity. Cell Host and Microbe, 2015, 18, 268-269.                                                                                                                                                               | 11.0 | 4         |
| 40 | The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa. Journal of Bacteriology, 2014, 196, 4081-4088.                                                                                             | 2.2  | 88        |
| 41 | Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators.<br>Nature Communications, 2014, 5, 4081.                                                                                                              | 12.8 | 80        |
| 42 | Activation and polar sequestration of <scp>PopA</scp> , a câ€diâ€ <scp>GMP</scp> effector protein<br>involved in <scp><i>C</i></scp> <i>aulobacter crescentus</i> cell cycle control. Molecular<br>Microbiology, 2014, 94, 580-594.                          | 2.5  | 52        |
| 43 | Inherent Regulation of EAL Domain-catalyzed Hydrolysis of Second Messenger Cyclic di-GMP. Journal of Biological Chemistry, 2014, 289, 6978-6990.                                                                                                             | 3.4  | 60        |
| 44 | Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides. Chemical Communications, 2014, 50, 8499.                                                                                                                          | 4.1  | 8         |
| 45 | Think globally, act locally: How bacteria integrate local decisions with their global cellular programme. EMBO Journal, 2013, 32, 1972-1974.                                                                                                                 | 7.8  | 4         |
| 46 | Structure and Signaling Mechanism of a Zinc-Sensory Diguanylate Cyclase. Structure, 2013, 21, 1149-1157.                                                                                                                                                     | 3.3  | 95        |
| 47 | Bi-modal Distribution of the Second Messenger c-di-GMP Controls Cell Fate and Asymmetry during the<br>Caulobacter Cell Cycle. PLoS Genetics, 2013, 9, e1003744.                                                                                              | 3.5  | 123       |
| 48 | De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle. Genes and<br>Development, 2013, 27, 2049-2062.                                                                                                                    | 5.9  | 51        |
| 49 | <scp>A</scp> lexander <scp>B</scp> öhm (1971–2012). Molecular Microbiology, 2013, 88, 219-221.                                                                                                                                                               | 2.5  | 2         |
| 50 | The YfiBNR Signal Transduction Mechanism Reveals Novel Targets for the Evolution of Persistent<br>Pseudomonas aeruginosa in Cystic Fibrosis Airways. PLoS Pathogens, 2012, 8, e1002760.                                                                      | 4.7  | 105       |
| 51 | Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein–protein interaction. EMBO Journal, 2012, 32, 354-368.                                                                                                          | 7.8  | 123       |
| 52 | A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins.<br>Journal of Proteomics, 2012, 75, 4874-4878.                                                                                                               | 2.4  | 48        |
| 53 | The orphan histidine protein kinase SgmT is a câ€diâ€GMP receptor and regulates composition of the<br>extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus<br>xanthus. Molecular Microbiology, 2012, 84, 147-165. | 2.5  | 52        |
| 54 | Regulatory Cohesion of Cell Cycle and Cell Differentiation through Interlinked Phosphorylation and Second Messenger Networks. Molecular Cell, 2011, 43, 550-560.                                                                                             | 9.7  | 169       |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Solution Structure of the PilZ Domain Protein PA4608 Complex with Cyclic di-GMP Identifies Charge<br>Clustering as Molecular Readout. Journal of Biological Chemistry, 2011, 286, 14304-14314.                                                               | 3.4  | 76        |
| 56 | Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila. MBio,<br>2011, 2, e00316-10.                                                                                                                                   | 4.1  | 46        |
| 57 | YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa. PLoS Pathogens, 2010, 6, e1000804.                                                                                                         | 4.7  | 197       |
| 58 | A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. Journal of Microbiological Methods, 2010, 81, 226-231.                                                                                | 1.6  | 191       |
| 59 | Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity. Cell, 2010, 141, 107-116.                                                                                                                                                               | 28.9 | 412       |
| 60 | Second messenger signalling governs <i>Escherichia coli</i> biofilm induction upon ribosomal stress. Molecular Microbiology, 2009, 72, 1500-1516.                                                                                                            | 2.5  | 183       |
| 61 | Structural and mechanistic determinants of c-di-GMP signalling. Nature Reviews Microbiology, 2009, 7, 724-735.                                                                                                                                               | 28.6 | 413       |
| 62 | Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes and Development, 2009, 23, 93-104.                                                                                                 | 5.9  | 272       |
| 63 | The role of proteolysis in the Caulobacter crescentus cell cycle and development. Research in<br>Microbiology, 2009, 160, 687-695.                                                                                                                           | 2.1  | 41        |
| 64 | Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Current Opinion in Microbiology, 2009, 12, 152-160.                                                                                             | 5.1  | 77        |
| 65 | Small molecule signaling. Current Opinion in Microbiology, 2009, 12, 125-128.                                                                                                                                                                                | 5.1  | 10        |
| 66 | Allosteric Regulation of Histidine Kinases by Their Cognate Response Regulator Determines Cell Fate.<br>Cell, 2008, 133, 452-461.                                                                                                                            | 28.9 | 141       |
| 67 | Activation of the Diguanylate Cyclase PleD by Phosphorylation-mediated Dimerization. Journal of<br>Biological Chemistry, 2007, 282, 29170-29177.                                                                                                             | 3.4  | 167       |
| 68 | DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls<br>flagellar motor function in Caulobacter crescentus. Proceedings of the National Academy of<br>Sciences of the United States of America, 2007, 104, 4112-4117. | 7.1  | 185       |
| 69 | Experimental evolution of aging in a bacterium. BMC Evolutionary Biology, 2007, 7, 126.                                                                                                                                                                      | 3.2  | 48        |
| 70 | Structure of BeF3â^'-Modified Response Regulator PleD: Implications for Diguanylate Cyclase Activation, Catalysis, and Feedback Inhibition. Structure, 2007, 15, 915-927.                                                                                    | 3.3  | 209       |
| 71 | Mechanisms of Cyclic-di-GMP Signaling in Bacteria. Annual Review of Genetics, 2006, 40, 385-407.                                                                                                                                                             | 7.6  | 571       |
| 72 | Allosteric Control of Cyclic di-GMP Signaling. Journal of Biological Chemistry, 2006, 281, 32015-32024.                                                                                                                                                      | 3.4  | 260       |

| #  | Article                                                                                                                                                                                          | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Holdfast Formation in Motile Swarmer Cells Optimizes Surface Attachment during Caulobacter crescentus Development. Journal of Bacteriology, 2006, 188, 5315-5318.                                | 2.2 | 75        |
| 74 | Allosteric Control of Cyclic di-GMP Signaling. Journal of Biological Chemistry, 2006, 281, 32015-32024.                                                                                          | 3.4 | 100       |
| 75 | "Neural Networks―in Bacteria: Making Connections. Journal of Bacteriology, 2005, 187, 26-36.                                                                                                     | 2.2 | 19        |
| 76 | Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP. Journal of Biological Chemistry, 2005, 280, 30829-30837.                    | 3.4 | 452       |
| 77 | Identification of the Protease and the Turnover Signal Responsible for Cell Cycle-Dependent<br>Degradation of the Caulobacter FliF Motor Protein. Journal of Bacteriology, 2004, 186, 4960-4971. | 2.2 | 38        |
| 78 | Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes and Development, 2004, 18, 715-727.                           | 5.9 | 554       |
| 79 | Structural basis of activity and allosteric control of diguanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17084-17089.             | 7.1 | 428       |
| 80 | Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria?. Current Opinion in Microbiology, 2004, 7, 185-191.      | 5.1 | 191       |
| 81 | Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Molecular<br>Microbiology, 2003, 47, 1695-1708.                                                                 | 2.5 | 255       |
| 82 | Regulation by proteolysis in bacterial cells. Current Opinion in Microbiology, 2003, 6, 163-172.                                                                                                 | 5.1 | 158       |
| 83 | Role of the Cytoplasmic C Terminus of the FliF Motor Protein in Flagellar Assembly and Rotation.<br>Journal of Bacteriology, 2003, 185, 1624-1633.                                               | 2.2 | 40        |
| 84 | Degradation of a Caulobacter Soluble Cytoplasmic Chemoreceptor Is ClpX Dependent. Journal of<br>Bacteriology, 2002, 184, 6635-6641.                                                              | 2.2 | 30        |
| 85 | The Caulobacter cell cycle: timing, spatial organization and checkpoints. Current Opinion in<br>Microbiology, 2002, 5, 558-563.                                                                  | 5.1 | 35        |
| 86 | The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Molecular Microbiology, 2002, 44, 461-478.                                       | 2.5 | 74        |
| 87 | Signal transduction mechanisms inCaulobacter crescentusdevelopment and cell cycle control. FEMS<br>Microbiology Reviews, 2000, 24, 177-191.                                                      | 8.6 | 48        |
| 88 | Regulatory circuits in Caulobacter. Current Opinion in Microbiology, 2000, 3, 171-176.                                                                                                           | 5.1 | 23        |
| 89 | Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS<br>Microbiology Reviews, 2000, 24, 177-191.                                                    | 8.6 | 36        |
| 90 | Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response<br>regulator. Molecular Microbiology, 1999, 32, 379-391.                                          | 2.5 | 124       |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Identification and Transcriptional Control of the Genes Encoding the <i>Caulobacter crescentus</i> ClpXP Protease. Journal of Bacteriology, 1999, 181, 3039-3050. | 2.2 | 33        |
| 92 | Expression of cell polarity during Caulobacter differentiation. Seminars in Developmental Biology, 1995, 6, 3-11.                                                 | 1.3 | 5         |
| 93 | Role of Cyclic Di-GMP in Caulobacter crescentus Development and Cell Cycle Control. , 0, , 120-136.                                                               |     | 1         |
| 94 | Photoaffinity Capture Compounds to Profile the Magic Spot Nucleotide Interactomes**. Angewandte<br>Chemie, 0, , .                                                 | 2.0 | 0         |