Mitsi A Blount

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purinergic signaling is enhanced in the absence of UTâ€A1 and UTâ€A3. Physiological Reports, 2021, 9, e14636.	1.7	1
2	Lack of urea transporters, UT-A1 and UT-A3, increases nitric oxide accumulation to dampen medullary sodium reabsorption through ENaC. American Journal of Physiology - Renal Physiology, 2019, 316, F539-F549.	2.7	2
3	Chronic lithium treatment induces novel patterns of pendrin localization and expression. American Journal of Physiology - Renal Physiology, 2018, 315, F313-F322.	2.7	5
4	UT (Urea Transporter). , 2018, , 5862-5872.		0
5	Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts. American Journal of Physiology - Renal Physiology, 2016, 310, F1008-F1012.	2.7	46
6	Transgenic Restoration of Urea Transporter A1 Confers Maximal Urinary Concentration in the Absence of Urea Transporter A3. Journal of the American Society of Nephrology: JASN, 2016, 27, 1448-1455.	6.1	19
7	UT (Urea Transporter). , 2016, , 1-10.		0
8	Activation of protein kinase Cα increases phosphorylation of the UT-A1 urea transporter at serine 494 in the inner medullary collecting duct. American Journal of Physiology - Cell Physiology, 2015, 309, C608-C615.	4.6	11
9	Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2015, 308, F49-F55.	2.7	12
10	Absence of PKC-Alpha Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus. PLoS ONE, 2014, 9, e101753.	2.5	17
11	Novel activators of aquaporin 2 membrane expression for the treatment of nephrogenic diabetes insipidus: less is more. Focus on "High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentrationâ€. American Journal of Physiology - Cell Physiology, 2014, 307, C595-C596.	4.6	2
12	Genes and Proteins of Urea Transporters. Sub-Cellular Biochemistry, 2014, 73, 45-63.	2.4	18
13	Urine concentration in the diabetic mouse requires both urea and water transporters. American Journal of Physiology - Renal Physiology, 2013, 304, F103-F111.	2.7	13
14	Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1. American Journal of Physiology - Renal Physiology, 2012, 302, F998-F1004.	2.7	11
15	Lack of protein kinase C-α leads to impaired urine concentrating ability and decreased aquaporin-2 in angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2012, 303, F37-F44.	2.7	19
16	The Role of Nitric Oxide in the Dysregulation of the Urine Concentration Mechanism in Diabetes Mellitus. Frontiers in Physiology, 2012, 3, 176.	2.8	14
17	Molecular mechanisms of urea transport in health and disease. Pflugers Archiv European Journal of Physiology, 2012, 464, 561-572.	2.8	40
18	The urea transporter UTâ€A1 is phosphorylated at serines 486 and 499 downstream of cyclic AMP production. FASEB Journal, 2012, 26, 885.11.	0.5	0

MITSI A BLOUNT

#	Article	IF	CITATIONS
19	Urea Transport in the Kidney. , 2011, 1, 699-729.		69
20	Metal ion stimulators of PDE5 cause similar conformational changes in the enzyme as does cGMP or sildenafil. Cellular Signalling, 2011, 23, 778-784.	3.6	4
21	Regulation of renal urea transport by vasopressin. Transactions of the American Clinical and Climatological Association, 2011, 122, 82-92.	0.5	26
22	A timely characterization of vasopressin-sensitive adenylyl cyclase isoforms in the mouse inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2010, 298, F857-F858.	2.7	2
23	Expression of transporters involved in urine concentration recovers differently after cessation of lithium treatment. American Journal of Physiology - Renal Physiology, 2010, 298, F601-F608.	2.7	28
24	Phosphorylation of UT-A1 on serine 486 correlates with membrane accumulation and urea transport activity in both rat IMCDs and cultured cells. American Journal of Physiology - Renal Physiology, 2010, 298, F935-F940.	2.7	33
25	Epac Regulates UT-A1 to Increase Urea Transport in Inner Medullary Collecting Ducts. Journal of the American Society of Nephrology: JASN, 2009, 20, 2018-2024.	6.1	48
26	Phosphorylation Increases Affinity of the Phosphodiesterase-5 Catalytic Site for Tadalafil. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 62-68.	2.5	18
27	Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. American Journal of Physiology - Renal Physiology, 2008, 295, F295-F299.	2.7	83
28	Urea transporters UT-A1 and UT-A3 accumulate in the plasma membrane in response to increased hypertonicity. American Journal of Physiology - Renal Physiology, 2008, 295, F1336-F1341.	2.7	34
29	Candesartan augments compensatory changes in medullary transport proteins in the diabetic rat kidney. American Journal of Physiology - Renal Physiology, 2008, 294, F1448-F1452.	2.7	19
30	AVP causes transient formation of cAMP and activation of phosphodiesterase activity in MDCK cells. FASEB Journal, 2008, 22, 1216.13.	0.5	0
31	Conversion of Phosphodiesterase-5 (PDE5) Catalytic Site to Higher Affinity by PDE5 Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 730-737.	2.5	23
32	Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. American Journal of Physiology - Renal Physiology, 2007, 293, F1308-F1313.	2.7	76
33	Phosphorylation of phosphodiesterase-5 is promoted by a conformational change induced by sildenafil, vardenafil, or tadalafil. Frontiers in Bioscience - Landmark, 2007, 12, 1899.	3.0	19
34	Vasopressin Increases Plasma Membrane Accumulation of Urea Transporter UT-A1 in Rat Inner Medullary Collecting Ducts. Journal of the American Society of Nephrology: JASN, 2006, 17, 2680-2686.	6.1	81
35	A 46-Amino Acid Segment in Phosphodiesterase-5 GAF-B Domain Provides for High Vardenafil Potency over Sildenafil and Tadalafil and Is Involved in Phosphodiesterase-5 Dimerization. Molecular Pharmacology, 2006, 70, 1822-1831.	2.3	34
36	Binding of Tritiated Sildenafil, Tadalafil, or Vardenafil to the Phosphodiesterase-5 Catalytic Site Displays Potency, Specificity, Heterogeneity, and cGMP Stimulation. Molecular Pharmacology, 2004, 66, 144-152.	2.3	168

#	Article	IF	CITATIONS
37	[3H]Sildenafil Binding to Phosphodiesterase-5 Is Specific, Kinetically Heterogeneous, and Stimulated by cGMP. Molecular Pharmacology, 2003, 63, 1364-1372.	2.3	75