
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317929/publications.pdf Version: 2024-02-01



Τλνεςμι

| #  | Article                                                                                                                                                                                                   | IF       | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 1  | Aligning single-wall carbon nanotubes with an alternating-current electric field. Applied Physics<br>Letters, 2001, 78, 3714-3716.                                                                        | 1.5      | 445       |
| 2  | Chemical treatment and modification of multi-walled carbon nanotubes. Physica B: Condensed Matter, 2002, 323, 280-283.                                                                                    | 1.3      | 269       |
| 3  | Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chemical Physics<br>Letters, 2006, 429, 497-502.                                                                      | 1.2      | 213       |
| 4  | Selective Diameter Control of Single-Walled Carbon Nanotubes in the Gas-Phase Synthesis. Journal of<br>Nanoscience and Nanotechnology, 2008, 8, 6153-6157.                                                | 0.9      | 204       |
| 5  | Cross section and complete set of proton spin observables inp→delastic scattering at 250 MeV. Physical<br>Review C, 2002, 66, .                                                                           | 1.1      | 143       |
| 6  | Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors.<br>Applied Physics Letters, 2008, 92, 243112.                                                            | 1.5      | 139       |
| 7  | Confined water inside single-walled carbon nanotubes: Global phase diagram and effect of finite<br>length. Journal of Chemical Physics, 2011, 134, 244501.                                                | 1.2      | 133       |
| 8  | CVD Growth of Single-Walled Carbon Nanotubes with Narrow Diameter Distribution over Fe/MgO<br>Catalyst and Their Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 10035-10041.      | 1.2      | 125       |
| 9  | From materials to device design of a thermoelectric fabric for wearable energy harvesters. Journal of<br>Materials Chemistry A, 2017, 5, 12068-12072.                                                     | 5.2      | 120       |
| 10 | High‥ield Synthesis of Ultrathin Metal Nanowires in Carbon Nanotubes. Angewandte Chemie -<br>International Edition, 2009, 48, 8298-8302.                                                                  | 7.2      | 89        |
| 11 | Size Control of Metal Nanoparticle Catalysts for the Gas-Phase Synthesis of Single-Walled Carbon<br>Nanotubes. Journal of Physical Chemistry B, 2005, 109, 10647-10652.                                   | 1.2      | 88        |
| 12 | Morphology and Melting Behavior of Ionic Liquids inside Single-Walled Carbon Nanotubes. Journal of<br>the American Chemical Society, 2009, 131, 14850-14856.                                              | 6.6      | 87        |
| 13 | Polarization transfer measurement forH1(d $\hat{a}f$ —,p $\hat{a}f$ —)H2elastic scattering at135MeV $\hat{a}$ •nucleonand three-nucleo<br>force effects. Physical Review C, 2004, 70, .                   | n<br>1.1 | 84        |
| 14 | Optical Band Gap Modification of Single-Walled Carbon Nanotubes by Encapsulated Fullerenes.<br>Journal of the American Chemical Society, 2008, 130, 4122-4128.                                            | 6.6      | 84        |
| 15 | Fabrication of high strength PVA/SWCNT composite fibers by gel spinning. Carbon, 2010, 48, 1977-1984.                                                                                                     | 5.4      | 83        |
| 16 | Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes. ACS Nano, 2014, 8,<br>9897-9904.                                                                                                    | 7.3      | 81        |
| 17 | Photoluminescence Mapping of "As-Grown―Single-Walled Carbon Nanotubes: A Comparison with<br>Micelle-Encapsulated Nanotube Solutions. Nano Letters, 2005, 5, 2618-2623.                                    | 4.5      | 68        |
| 18 | Measurement of the extragalactic background light using MAGIC and Fermi-LAT gamma-ray<br>observations of blazars up to zÂ=Â1. Monthly Notices of the Royal Astronomical Society, 2019, 486,<br>4233-4251. | 1.6      | 67        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                            | IF             | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| 19 | Supramolecular Catalysts for the Gas-phase Synthesis of Single-walled Carbon Nanotubes. Journal of<br>Physical Chemistry B, 2006, 110, 5849-5853.                                                                                                                                                                                                                                                                                                  | 1.2            | 63          |
| 20 | Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale, 2015, 7, 1383-1391.                                                                                                                                                                                                                                                                                                        | 2.8            | 60          |
| 21 | Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives. Nano Letters, 2015, 15, 5716-5723.                                                                                                                                                                                                                                                                                                                                            | 4.5            | 56          |
| 22 | Selective Matching of Catalyst Element and Carbon Source in Single-Walled Carbon Nanotube Synthesis on Silicon Substrates. Journal of Physical Chemistry B, 2005, 109, 2632-2637.                                                                                                                                                                                                                                                                  | 1.2            | 52          |
| 23 | Bounds on Lorentz Invariance Violation from MACIC Observation of GRB 190114C. Physical Review Letters, 2020, 125, 021301.                                                                                                                                                                                                                                                                                                                          | 2.9            | 52          |
| 24 | Thermoelectric properties of single-wall carbon nanotube films: Effects of diameter and wet environment. Applied Physics Express, 2016, 9, 025102.                                                                                                                                                                                                                                                                                                 | 1.1            | 49          |
| 25 | Ultra-thin and high-response transparent and flexible heater based on carbon nanotube film. Applied<br>Physics Letters, 2017, 110, .                                                                                                                                                                                                                                                                                                               | 1.5            | 49          |
| 26 | High yield synthesis and characterization of the structural and magnetic properties of crystalline<br>ErCl3 nanowires in single-walled carbon nanotube templates. Nano Research, 2008, 1, 152-157.                                                                                                                                                                                                                                                 | 5.8            | 48          |
| 27 | A Novel Method for Characterizing the Diameter of Single-Wall Carbon Nanotubes by Optical<br>Absorption Spectra. Applied Physics Express, 2009, 2, 095006.                                                                                                                                                                                                                                                                                         | 1.1            | 47          |
| 28 | Fermi-Level-Controlled Semiconducting-Separated Carbon Nanotube Films for Flexible Terahertz<br>Imagers. ACS Applied Nano Materials, 2018, 1, 2469-2475.                                                                                                                                                                                                                                                                                           | 2.4            | 46          |
| 29 | xmins:mmi="http://www.w3.org/1998/Math/Math/MathVL<br>display="inline"> <mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>60</mml:mn>: First Spectroscopy of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Kr</mml:mi></mml:mrow><mml:mpres< td=""><td>2.9</td><td>nath&gt;<br/>44</td></mml:mpres<></mml:mmultiscripts></mml:mrow></mml:math></mml:mrow> | 2.9            | nath><br>44 |
| 30 | Photoluminescence quenching in peapod-derived double-walled carbon nanotubes. Physical Review B, 2006, 74, .                                                                                                                                                                                                                                                                                                                                       | 1.1            | 43          |
| 31 | Electron Microscopic Imaging of a Single Group 8 Metal Atom Catalyzing C–C Bond Reorganization of Fullerenes. Journal of the American Chemical Society, 2011, 133, 14151-14153. Are There Signatures of Harmonic Oscillator Shells Far from Stability? First Spectroscopy of                                                                                                                                                                       | 6.6            | 43          |
| 32 | <pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/Math/L"><mml:mrow><mml:mrow><mml:mi>Zr</mml:mi></mml:mrow><mml:mpres></mml:mpres><mml:none></mml:none><mml:mrow><mml:mn>110</mml:mn></mml:mrow></mml:mrow><td>scripts<br/>2.9</td><td>41</td></mml:math></pre>                                                                                                                                                              | scripts<br>2.9 | 41          |
| 33 | Physical Review Letters, 2017, 118, 032501.<br>Separation of Metallic and Semiconducting Single-Wall Carbon Nanotube Solution by Vertical<br>Electric Field. Journal of Physical Chemistry C, 2011, 115, 22827-22832.                                                                                                                                                                                                                              | 1.5            | 40          |
| 34 | Chromophore Ordering by Confinement into Carbon Nanotubes. Journal of Physical Chemistry C, 2014,<br>118, 19462-19468.                                                                                                                                                                                                                                                                                                                             | 1.5            | 40          |
| 35 | IR-Extended Photoluminescence Mapping of Single-Wall and Double-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 17420-17424.                                                                                                                                                                                                                                                                                                    | 1.2            | 39          |
| 36 | Diameterâ€Dependent Performance of Singleâ€Walled Carbon Nanotube Thinâ€Film Transistors. Advanced<br>Materials, 2011, 23, 4631-4635.                                                                                                                                                                                                                                                                                                              | 11.1           | 39          |

| #  | Article                                                                                                                                                                                                                                                                                                                                     | IF       | CITATIONS              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|
| 37 | Diameter-dependent hydrophobicity in carbon nanotubes. Journal of Chemical Physics, 2016, 145, .                                                                                                                                                                                                                                            | 1.2      | 39                     |
| 38 | Gamow-Teller unit cross sections of the <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:mrow><mml:mo<br>stretchy="false"&gt;(<mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo) td="" tj<=""><td>ETQqQ100</td><td>rgB<b>B</b>¢Overlock</td></mml:mo)></mml:mo<br></mml:mrow></mml:math<br> | ETQqQ100 | rgB <b>B</b> ¢Overlock |
| 39 | nuclei. Physical Review C, 2009, 79, .<br>Highly stable n-type thermoelectric materials fabricated <i>via</i> electron doping into inkjet-printed<br>carbon nanotubes using oxygen-abundant simple polymers. Molecular Systems Design and Engineering,<br>2017, 2, 616-623.                                                                 | 1.7      | 36                     |
| 40 | Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chemical Physics Letters, 2006, 420, 286-290.                                                                                                                                                            | 1.2      | 34                     |
| 41 | Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Applied Physics Express, 2016, 9, 055101.                                                                                                                                                                                    | 1.1      | 33                     |
| 42 | Constraining very-high-energy and optical emission from FRB 121102 with the MAGIC telescopes.<br>Monthly Notices of the Royal Astronomical Society, 2018, 481, 2479-2486.                                                                                                                                                                   | 1.6      | 33                     |
| 43 | Electrochemical durability of single-wall carbon nanotube electrode against anodic oxidation in water. Carbon, 2012, 50, 4932-4938.                                                                                                                                                                                                         | 5.4      | 32                     |
| 44 | Monitoring of the radio galaxy MÂ87 during a low-emission state from 2012 to 2015 with MAGIC.<br>Monthly Notices of the Royal Astronomical Society, 2020, 492, 5354-5365.                                                                                                                                                                   | 1.6      | 31                     |
| 45 | Interdependency of Gas Phase Intermediates and Chemical Vapor Deposition Growth of Single Wall<br>Carbon Nanotubes. Chemistry of Materials, 2010, 22, 6035-6043.                                                                                                                                                                            | 3.2      | 29                     |
| 46 | Inner tube growth properties and electronic structure of ferrocene-filled large diameter<br>single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2575-2580.                                                                                                                                                | 0.7      | 29                     |
| 47 | Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes.<br>Nanoscale, 2017, 9, 7998-8006.                                                                                                                                                                                                            | 2.8      | 29                     |
| 48 | An efficient carbon precursor for gas phase growth of SWCNTs. Chemical Communications, 2009, ,<br>3422.                                                                                                                                                                                                                                     | 2.2      | 28                     |
| 49 | Synthesis of oligo(m-aniline). Tetrahedron Letters, 1995, 36, 8809-8812.                                                                                                                                                                                                                                                                    | 0.7      | 27                     |
| 50 | First experiment of 6He with a polarized proton target. European Physical Journal A, 2005, 25, 255-258.                                                                                                                                                                                                                                     | 1.0      | 27                     |
| 51 | Fractionation of Single Wall Carbon Nanotubes by Length Using Cross Flow Filtration Method. ACS<br>Nano, 2010, 4, 3606-3610.                                                                                                                                                                                                                | 7.3      | 27                     |
| 52 | Toward Confined Carbyne with Tailored Properties. Nano Letters, 2021, 21, 1096-1101.                                                                                                                                                                                                                                                        | 4.5      | 27                     |
| 53 | Investigating the peculiar emission from the new VHE gamma-ray source H1722+119. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3271-3281.                                                                                                                                                                                   | 1.6      | 26                     |
| 54 | Constraining Lorentz Invariance Violation Using the Crab Pulsar Emission Observed up to TeV Energies<br>by MAGIC. Astrophysical Journal, Supplement Series, 2017, 232, 9.                                                                                                                                                                   | 3.0      | 25                     |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Fabrication of Large-Area Graphene Using Liquid Gallium and Its Electrical Properties. Japanese Journal of Applied Physics, 2010, 49, 06GC01.                                                                                   | 0.8  | 24        |
| 56 | Industrially Feasible Approach to Transparent, Flexible, and Conductive Carbon Nanotube Films:<br>Cellulose-Assisted Film Deposition Followed by Solution and Photonic Processing. Applied Physics<br>Express, 2013, 6, 025101. | 1.1  | 24        |
| 57 | Building interconnects in carbon nanotube networks with metal halides for transparent electrodes.<br>Carbon, 2015, 87, 61-69.                                                                                                   | 5.4  | 24        |
| 58 | Length dependent performance of single-wall carbon nanotube thin film transistors. Carbon, 2015, 91, 370-377.                                                                                                                   | 5.4  | 24        |
| 59 | Fundamental Importance of Background Analysis in Precise Characterization of Single-Walled Carbon<br>Nanotubes by Optical Absorption Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 10077-10081.                     | 1.5  | 23        |
| 60 | Nickel clusters embedded in carbon nanotubes as high performance magnets. Scientific Reports, 2015, 5, 15033.                                                                                                                   | 1.6  | 23        |
| 61 | Well-defined sub-nanometer graphene ribbons synthesized inside carbon nanotubes. Carbon, 2021, 171, 221-229.                                                                                                                    | 5.4  | 23        |
| 62 | Highly Uniform Thin-Film Transistors Printed on Flexible Plastic Films with Morphology-Controlled<br>Carbon Nanotube Network Channels. Applied Physics Express, 2012, 5, 055102.                                                | 1.1  | 22        |
| 63 | Gamma Decay of Unbound Neutron-Hole States in Sn133. Physical Review Letters, 2017, 118, 202502.                                                                                                                                | 2.9  | 22        |
| 64 | One-Dimensional Molecular Crystal of Phthalocyanine Confined into Single-Walled Carbon<br>Nanotubes. Journal of Physical Chemistry C, 2015, 119, 5203-5210.                                                                     | 1.5  | 21        |
| 65 | Chiral vector and metal catalyst-dependent growth kinetics of single-wall carbon nanotubes. Carbon, 2018, 133, 283-292.                                                                                                         | 5.4  | 21        |
| 66 | Temperature dependence of inner tube growth from ferroceneâ€filled singleâ€walled carbon nanotubes.<br>Physica Status Solidi (B): Basic Research, 2011, 248, 2492-2495.                                                         | 0.7  | 20        |
| 67 | Photoreactivity Preservation of AgBr Nanowires in Confined Nanospaces. Advanced Materials, 2010, 22, 3156-3160.                                                                                                                 | 11.1 | 19        |
| 68 | Carbon nanotubes from enhanced direct injection pyrolytic synthesis as templates for long linear<br>carbon chain formation. Physica Status Solidi (B): Basic Research, 2013, 250, 2611-2615.                                    | 0.7  | 19        |
| 69 | Exchange coupling in a frustrated trimetric molecular magnet reversed by a 1D nano-confinement.<br>Nanoscale, 2019, 11, 10615-10621.                                                                                            | 2.8  | 19        |
| 70 | Nanochemical reactions by laser annealing of ferrocene filled singleâ€walled carbon nanotubes.<br>Physica Status Solidi (B): Basic Research, 2011, 248, 2488-2491.                                                              | 0.7  | 18        |
| 71 | The Interaction Mean Free Paths and the Fragmentation Probabilities of Cosmic Heavy Nuclei at Energies Above 10 GeV/Nucleon. Journal of the Physical Society of Japan, 1971, 30, 1243-1251.                                     | 0.7  | 17        |
| 72 | The growth of new extended carbon nanophases from ferrocene inside singleâ€walled carbon<br>nanotubes. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700158.                                                       | 1.2  | 17        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fermi level shift in carbon nanotubes by dye confinement. Carbon, 2019, 149, 772-780.                                                                                                                                                      | 5.4 | 17        |
| 74 | Change in band structure of orthorhombic Rb1C60 with the chain rotation modeling merohedral disorder. Chemical Physics Letters, 1997, 272, 189-192.                                                                                        | 1.2 | 16        |
| 75 | Templated direct growth of ultra-thin double-walled carbon nanotubes. Nanoscale, 2018, 10,<br>21254-21261.                                                                                                                                 | 2.8 | 16        |
| 76 | Development of a system for experiencing tactile sensation from a robot hand by electrically stimulating sensory nerve fiber. , 0, , .                                                                                                     |     | 15        |
| 77 | Preparation and characterization of transparent and conductive thin films of single-walled carbon nanotubes. Nanoscale, 2011, 3, 1904.                                                                                                     | 2.8 | 15        |
| 78 | Understanding the doping effects on the structural and electrical properties of ultrathin carbon nanotube networks. Journal of Applied Physics, 2015, 118, 215305.                                                                         | 1.1 | 15        |
| 79 | Temperature-dependent inner tube growth and electronic structure of nickelocene-filled<br>single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2485-2490.                                                 | 0.7 | 15        |
| 80 | MAGIC detection of very high energy γ-ray emission from the low-luminosity blazar 1ESÂ1741+196.<br>Monthly Notices of the Royal Astronomical Society, 2017, 468, 1534-1541.                                                                | 1.6 | 15        |
| 81 | Synthesis and Photophysics of Quaterrylene Molecules in Single-Walled Carbon Nanotubes:<br>Excitation Energy Transfer between a Nanoscale Cylinder and Encapsulated Molecules. Journal of<br>Physical Chemistry C, 2014, 118, 21671-21681. | 1.5 | 14        |
| 82 | Rotational dynamics and dynamical transition of water inside hydrophobic pores of carbon nanotubes. Scientific Reports, 2017, 7, 14834.                                                                                                    | 1.6 | 14        |
| 83 | An intermittent extreme BL Lac: MWL study of 1ESÂ2344+514 in an enhanced state. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3912-3928.                                                                                   | 1.6 | 14        |
| 84 | The variogram method for a fractal model of a rock joint surface. Geotechnical and Geological Engineering, 1999, 17, 197-210.                                                                                                              | 0.8 | 13        |
| 85 | Low variability with high performance in thin-film transistors of semiconducting carbon nanotubes achieved by shortening tube lengths. RSC Advances, 2012, 2, 12408.                                                                       | 1.7 | 13        |
| 86 | Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2018, 124, 1.                                     | 1.1 | 13        |
| 87 | Oxidation stability of confined linear carbon chains, carbon nanotubes, and graphene nanoribbons as 1D nanocarbons. Nanoscale, 2019, 11, 15253-15258.                                                                                      | 2.8 | 13        |
| 88 | Multiwavelength variability and correlation studies of MrkÂ421 during historically low X-ray and γ-ray activity in 2015–2016. Monthly Notices of the Royal Astronomical Society, 0, , .                                                    | 1.6 | 13        |
| 89 | Raman scattering from ferrocene encapsulated in narrow diameter carbon nanotubes. Physica Status<br>Solidi (B): Basic Research, 2009, 246, 2724-2727.                                                                                      | 0.7 | 12        |
| 90 | Green tea-aided dispersion of single-walled carbon nanotubes in non-water media: Application for extraordinary reinforcement of nanocomposite fibers. Textile Reseach Journal, 2012, 82, 911-919.                                          | 1.1 | 12        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Observation of the intrinsic magnetic susceptibility of highly purified single-wall carbon nanotubes.<br>Physical Review B, 2015, 92, .                                                                                                  | 1.1 | 12        |
| 92  | Search for narrow dibaryon resonances by thepd→pdXandpd→ppXreactions. Physical Review C, 2002, 65, .                                                                                                                                     | 1.1 | 11        |
| 93  | Analyzing powers Ayy , Axx , Axz and Ay in the dd → 3Hen reaction at 270 MeV. European Physical Journal<br>A, 2007, 33, 39-46.                                                                                                           | 1.0 | 11        |
| 94  | Global Phase Diagram of Water Confined on the Nanometer Scale. Journal of the Physical Society of<br>Japan, 2010, 79, 083802.                                                                                                            | 0.7 | 11        |
| 95  | Prevention of Sn and Pb Crystallization in a Confined Nanospace. Small, 2010, 6, 1279-1282.                                                                                                                                              | 5.2 | 11        |
| 96  | Comparison of Doping Levels of Singleâ€Walled Carbon Nanotubes Synthesized by Arcâ€Discharge and<br>Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. Physica Status Solidi (B): Basic<br>Research, 2018, 255, 1800178. | 0.7 | 11        |
| 97  | Ultrafast luminescence kinetics of metallic single-walled carbon nanotubes: Possible evidence for excitonic luminescence. Physical Review B, 2012, 85, .                                                                                 | 1.1 | 10        |
| 98  | Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes. Applied<br>Physics A: Materials Science and Processing, 2016, 122, 1.                                                                           | 1.1 | 10        |
| 99  | Fabrication of carbon nanotube hybrid films as transparent electrodes for small-molecule photovoltaic cells. RSC Advances, 2016, 6, 25062-25069.                                                                                         | 1.7 | 10        |
| 100 | Effects of Tube Diameter and Length on Transparent Conductivity of Single-Walled Carbon Nanotube<br>Network Films. Journal of Nanomaterials, 2018, 2018, 1-9.                                                                            | 1.5 | 10        |
| 101 | Enhancement of element production by incomplete fusion reaction with weakly bound deuteron.<br>Communications Physics, 2019, 2, .                                                                                                        | 2.0 | 10        |
| 102 | Spin-glassy phase of TDAE-C60crystals. Physical Review B, 1997, 55, 11052-11055.                                                                                                                                                         | 1.1 | 9         |
| 103 | Wall-Number Selectivity in Single/Double-Wall Carbon Nanotube Production by Enhanced Direct<br>Injection Pyrolytic Synthesis. Japanese Journal of Applied Physics, 2013, 52, 105102.                                                     | 0.8 | 9         |
| 104 | Enhanced thermoelectric power of single-wall carbon nanotube film blended with ionic liquid.<br>Japanese Journal of Applied Physics, 2016, 55, 03DC01.                                                                                   | 0.8 | 9         |
| 105 | Polarity tuning of single-walled carbon nanotube by dipole field of ferroelectric polymer for thermoelectric conversion. Applied Physics Express, 2016, 9, 081301.                                                                       | 1.1 | 9         |
| 106 | Environment Effects on the Charge States of Metallic and Semiconducting SWCNTs during Their<br>Separation by the Electric-Field Induced Layer Formation Method. Journal of Physical Chemistry C,<br>2019, 123, 3829-3835.                | 1.5 | 9         |
| 107 | Terbium( <scp>iii</scp> ) bis-phthalocyaninato single-molecule magnet encapsulated in a single-walled carbon nanotube. Journal of Materials Chemistry C, 2021, 9, 10697-10704.                                                           | 2.7 | 9         |
| 108 | The Chemical Composition and the Energy Spectrum of Heavy Nuclei in the Cosmic Radiation above 10<br>GeV/nucleon. Journal of the Physical Society of Japan, 1971, 30, 1535-1545.                                                         | 0.7 | 8         |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Mechanical immobilization of Hela cells on aligned carbon nanotube array. Materials Letters, 2006, 60, 3851-3854.                                                                                                           | 1.3  | 8         |
| 110 | <i>In situ</i> Raman spectroscopy studies on timeâ€dependent inner tube growth in ferroceneâ€filled<br>large diameter singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251,<br>2394-2400.  | 0.7  | 8         |
| 111 | Separation of Nickelocene-Filled Single-Walled Carbon Nanotubes by Conductivity Type and Diameter.<br>Physica Status Solidi (B): Basic Research, 2017, 254, 1700178.                                                        | 0.7  | 8         |
| 112 | Deep observations of the globular cluster M15 with the MAGIC telescopes. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2876-2885.                                                                           | 1.6  | 8         |
| 113 | Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled<br>single-walled carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 20-26.                                 | 1.0  | 8         |
| 114 | Excitation Energy Transfer by Electron Exchange via Two-Step Electron Transfer between a<br>Single-Walled Carbon Nanotube and Encapsulated Magnesium Porphyrin. Journal of Physical<br>Chemistry C, 2020, 124, 19406-19412. | 1.5  | 8         |
| 115 | Carbon nanotube-dependent synthesis of armchair graphene nanoribbons. Nano Research, 2022, 15, 1709-1714.                                                                                                                   | 5.8  | 8         |
| 116 | MEASUREMENT OF p+d ELASTIC SCATTERING AT EP = 392 MEV. Modern Physics Letters A, 2003, 18, 440-443.                                                                                                                         | 0.5  | 7         |
| 117 | Longâ€Range Electron Transfer through a Singleâ€walled Carbon Nanotube Sheet. Advanced Materials,<br>2008, 20, 2475-2479.                                                                                                   | 11.1 | 7         |
| 118 | Towards controllable inner chirality in double-walled carbon nanotubes. Applied Physics Letters, 2019, 115, .                                                                                                               | 1.5  | 7         |
| 119 | MAGIC and <i>Fermi</i> -LAT gamma-ray results on unassociated HAWC sources. Monthly Notices of the Royal Astronomical Society, 2019, 485, 356-366.                                                                          | 1.6  | 7         |
| 120 | QUANTUM STOCHASTIC HEISENBERG EQUATION. Modern Physics Letters B, 1992, 06, 1319-1327.                                                                                                                                      | 1.0  | 6         |
| 121 | QUANTUM STOCHASTIC LIOUVILLE EQUATION OF ITO TYPE. Modern Physics Letters B, 1993, 07, 1951-1959.                                                                                                                           | 1.0  | 6         |
| 122 | Ab Initio MO Study of the Cationic States of 1,3,5-Triazine and Hexahydro-1,3,5-triazine. Journal of Physical Chemistry A, 1998, 102, 8021-8026.                                                                            | 1.1  | 6         |
| 123 | Electronic structures of transition metal–C60 coordination polymers (Ε6-C60)nMn (M=Sc, Ti, V, or Cr).<br>Synthetic Metals, 2000, 108, 67-73.                                                                                | 2.1  | 6         |
| 124 | <i>In Situ</i> Observation of Gold Chloride Decomposition in a Confined Nanospace by Transmission Electron Microscopy. Materials Transactions, 2014, 55, 461-465.                                                           | 0.4  | 6         |
| 125 | Tailoring the electronic properties of single-walled carbon nanotubes via filling with nickel<br>acetylacetonate. Physica Status Solidi (B): Basic Research, 2015, 252, 2546-2550.                                          | 0.7  | 6         |
| 126 | Photoinduced charge-carrier modulation of inkjet-printed carbon nanotubes via poly(vinyl acetate)<br>doping and dedoping for thermoelectric generators. Chemical Physics Letters, 2018, 691, 219-223.                       | 1.2  | 6         |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Discovery of TeV Î <sup>3</sup> -ray emission from the neighbourhood of the supernova remnant G24.7+0.6 by MAGIC.<br>Monthly Notices of the Royal Astronomical Society, 2019, 483, 4578-4585.                                | 1.6 | 6         |
| 128 | Isotopic Labelling of Confined Carbyne. Angewandte Chemie - International Edition, 2021, 60, 9897-9901.                                                                                                                      | 7.2 | 6         |
| 129 | QUANTUM STOCHASTIC EQUATIONS FOR A NON-LINEAR DAMPED OSCILLATOR. Modern Physics Letters B, 1993, 07, 623-631.                                                                                                                | 1.0 | 5         |
| 130 | Fullerene derivatives encapsulated in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4074-4077.                                                                                                     | 0.7 | 5         |
| 131 | From "Strong―to "Much Stronger― Utilization of Green Tea Extract Dispersant for SWCNTâ€Reinforced<br>Polymer Composites. Macromolecular Materials and Engineering, 2012, 297, 1114-1123.                                     | 1.7 | 5         |
| 132 | Synthesis of refractory conductive niobium carbide nanowires within the inner space of carbon nanotube templates. Applied Physics Express, 2014, 7, 015101.                                                                  | 1.1 | 5         |
| 133 | Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes. Journal of Nanophotonics, 2015, 10, 012514.                                                                              | 0.4 | 5         |
| 134 | MAGIC observations of the microquasar V404 Cygni during the 2015 outburst. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1688-1693.                                                                          | 1.6 | 5         |
| 135 | High concentration bolometric system with single-walled carbon nanotubes (SWCNT) absorber.<br>Nanotechnology, 2020, 31, 125202.                                                                                              | 1.3 | 5         |
| 136 | Dispersion-managed, high-power, Tm-doped ultrashort pulse fiber laser using single-wall-carbon-nanotube polyimide film. OSA Continuum, 2021, 4, 137.                                                                         | 1.8 | 5         |
| 137 | Preparation, X-ray crystal structures and electronic properties<br>ofN,N′-bis(2,6-dinitrophenyl)-1,3-phenylenediamine and a complex with tetracyano-p-quinodimethane.<br>Journal of Materials Chemistry, 1998, 8, 1799-1803. | 6.7 | 4         |
| 138 | Chain-orientation dependence of electronic structure of RbC60 crystal. Synthetic Metals, 2000, 113, 45-51.                                                                                                                   | 2.1 | 4         |
| 139 | THE ANGULAR DISTRIBUTIONS OF THE VECTOR Ay AND TENSOR Ayy, Axx, Axz ANALYZING POWERS IN THE dd â†<br>3Hp AND dd → 3Hen REACTIONS AT Ed = 200 AND 270 MeV. International Journal of Modern Physics A, 2009,<br>24, 526-529.   | 0.5 | 4         |
| 140 | The origin of nondispersive Raman lines in the D-band region for ferrocene@HiPco SWCNTs<br>transformed at high temperatures. Physica Status Solidi (B): Basic Research, 2015, 252, 2530-2535.                                | 0.7 | 4         |
| 141 | Magnetic susceptibility of the one-dimensional polymeric phase ofRbC60. Physical Review B, 2000, 61, 16091-16096.                                                                                                            | 1.1 | 3         |
| 142 | POLY(3, 4-ETHYLENEDIOXYTHIOPHENE): POLY(STYRENESULFONATE)/SINGLE-WALL CARBON NANOTUBE<br>COMPOSITE FILM FOR THE HOLE TRANSPORT LAYER IN POLYMER SOLAR CELLS. Nano, 2011, 06, 583-588.                                        | 0.5 | 3         |
| 143 | Electrical property of printed transistors fabricated with various types of carbon nanotube ink. , 2012, , .                                                                                                                 |     | 3         |
| 144 | Coulomb breakup reactions of 93,94Zr in inverse kinematics. Progress of Theoretical and Experimental Physics, 2019, 2019, .                                                                                                  | 1.8 | 3         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Near-field infrared microscopy of nanometer-sized nickel clusters inside single-walled carbon nanotubes. RSC Advances, 2019, 9, 34120-34124.                                              | 1.7 | 3         |
| 146 | Role of constituents for the chirality isolation of single-walled carbon nanotubes by the reversible phase transition of a thermoresponsive polymer. RSC Advances, 2020, 10, 24570-24576. | 1.7 | 3         |
| 147 | Large thermoelectric power factor in wafer-scale free-standing single-walled carbon nanotube films.<br>Applied Physics Letters, 2021, 118, 173902.                                        | 1.5 | 3         |
| 148 | POLARIZATION TRANSFER MEASUREMENT FOR d-p ELASTIC SCATTERING: TO SEARCH FOR THREE NUCLEON FORCE EFFECTS. Modern Physics Letters A, 2003, 18, 327-329.                                     | 0.5 | 2         |
| 149 | Spin Entanglement Measurement of Two Protons. Journal of the Physical Society of Japan, 2003, 72, 193-195.                                                                                | 0.7 | 2         |
| 150 | Status of the investigation of the spin structure of d, 3H, and 3He at VBLHE using polarized and unpolarized deuteron beam. Physics of Atomic Nuclei, 2008, 71, 1495-1501.                | 0.1 | 2         |
| 151 | Transparent conductive thin films of single-wall carbon nanotubes encapsulating dopant molecules.<br>Applied Physics Letters, 2012, 100, 063121.                                          | 1.5 | 2         |
| 152 | Thin-film transistors using DNA-wrapped semiconducting single-wall carbon nanotubes with selected chiralities. Applied Physics Express, 2015, 8, 105101.                                  | 1.1 | 2         |
| 153 | Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube. Journal of Luminescence, 2016, 169, 645-648.                                        | 1.5 | 2         |
| 154 | Synthesis and characterization of liquid-phase prepared RbC60. Solid State Communications, 1999, 111, 131-135.                                                                            | 0.9 | 1         |
| 155 | THREE-BODY EFFECTS IN \$vec{p}d\$ ELASTIC SCATTERING AT 250 MEV. Modern Physics Letters A, 2003, 18, 313-316.                                                                             | 0.5 | 1         |
| 156 | MEASUREMENT OF THE ANALYZING POWERS FOR THE \${vec d}d o {}^3{m He}, n\$ AND \${vec d}d o {}^3{m H}, p\$ REACTIONS AT INTERMEDIATE ENERGIES. Modern Physics Letters A, 2003, 18, 294-297. | 0.5 | 1         |
| 157 | Determination of the Gamow-Teller Quenching Factor via the90Zr(n, p) Reaction at 293 MeV. AIP<br>Conference Proceedings, 2003, , .                                                        | 0.3 | 1         |
| 158 | MEASUREMENTS OF THE TENSOR AND VECTOR ANALYZING POWERS FOR THE d+d→3H+p AND d+d→3He+n<br>REACTIONS AT 270 MeV. International Journal of Modern Physics A, 2005, 20, 646-648.              | 0.5 | 1         |
| 159 | Search for supernarrow dibaryons via thepd→ppXandpd→pdXreactions. Physical Review C, 2006, 74, .                                                                                          | 1.1 | 1         |
| 160 | Tensor analyzing power T 20 of the dd → 3Hen and dd → 3Hp reactions at zero angle for energies 140, 200,<br>and 270 MeV. Physics of Atomic Nuclei, 2006, 69, 1271-1278.                   | 0.1 | 1         |
| 161 | Measurement of the vector A y and tensor A yy , A xx , A xz analyzing powers for the dd → 3H p reaction<br>at 200 MeV. European Physical Journal: Special Topics, 2008, 162, 133-136.     | 1.2 | 1         |
| 162 | Printing technology and advantage of purified semiconducting carbon nanotubes for thin film                                                                                               |     | 1         |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Observation and Characterization of Fragile Organometallic Molecules Encapsulated in Single-Wall<br>Carbon Nanotubes. Journal of Nanomaterials, 2014, 2014, 1-5.                              | 1.5 | 1         |
| 164 | Thermodynamics and kinetics of polyoxyethylene alkyl ether evaporation from inkjet-printed carbon nanotube thin films by vacuum annealing. Flexible and Printed Electronics, 2018, 3, 025006. | 1.5 | 1         |
| 165 | Adhesion property of carbon nanotube micelles for high-quality printed transistors. , 2016, , .                                                                                               |     | 1         |
| 166 | The Interaction Mean Free Path of $\hat{I}\pm$ -Particles in Nuclear Emulsion. Journal of the Physical Society of Japan, 1971, 30, 1195-1195.                                                 | 0.7 | 1         |
| 167 | The (p, d) reactions on A=12–94 nuclei by 65 MeV polarized protons. AIP Conference Proceedings, 1981, , .                                                                                     | 0.3 | 0         |
| 168 | Measurements of analyzing powers for 6â^' states in 28Si and 24Mg by inelastic scattering of 65 MeV polarized protons. AIP Conference Proceedings, 1981, , .                                  | 0.3 | 0         |
| 169 | Self-induced phase and amplitude modulations of vibration in dye molecules/polymer film studied with sub-5-fs pulses. , 0, , .                                                                |     | 0         |
| 170 | Dynamic intensity borrowing induced by coherent vibrations in J-aggregates detected by sub-5-fs spectroscopy. , 0, , .                                                                        |     | 0         |
| 171 | Role of deuteron internal variables in the [sup 3]He(d,p)[sup 4]He reaction. AIP Conference<br>Proceedings, 2001, , .                                                                         | 0.3 | 0         |
| 172 | Dynamic intensity borrowing induced by coherent molecular vibration observed by sub-5-fs spectroscopy. , 0, , .                                                                               |     | 0         |
| 173 | Clear signature of three-nucleon force effects via the precise measurements of $d\hat{a}f - p\hat{a}f - and n\hat{a}f - d$ scatterings. AIP Conference Proceedings, 2002, , .                 | 0.3 | 0         |
| 174 | SEARCH FOR SUPER-NARROW DIBARYON RESONANCES BY THE pd → pdX AND pd → ppX REACTIONS. Modern Physics Letters A, 2003, 18, 410-413.                                                              | 0.5 | 0         |
| 175 | MEASUREMENT OF DIFFERENTIAL CROSS SECTIONS AND VECTOR ANALYZING POWERS FOR THE \${vec n}d\$<br>REACTION AT 250 MEV. Modern Physics Letters A, 2003, 18, 298-301.                              | 0.5 | 0         |
| 176 | DETERMINATION OF THE GAMOW-TELLER QUENCHING FACTOR VIA THE 90Zr(n, p) REACTION AT 293 MEV. , 2003, , .                                                                                        |     | 0         |
| 177 | Study of 3He (3H) Spin Structure via dâ $f$ —d→He3n(H3p) Reaction. , 2003, , .                                                                                                                |     | 0         |
| 178 | 6He Scattering With Polarized Proton Target. AIP Conference Proceedings, 2005, , .                                                                                                            | 0.3 | 0         |
| 179 | Application of the 1H(d,2He)n reaction to the EPR paradox. Few-Body Systems, 2008, 44, 35-38.                                                                                                 | 0.7 | Ο         |

| #   | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Analyzing powers in the dd→[sup 3]Hen([sup 3]Hp) reactions at intermediate energies. AIP Conference<br>Proceedings, 2008, , .                                                                                                                                                                        | 0.3 | 0         |
| 182 | Enhancement of Third-Order Optical Nonlinearities in Carbon Nanotubes by Encapsulated Fullerenes. , 2011, , .                                                                                                                                                                                        |     | 0         |
| 183 | The investigation of short-range 3He, 3H and deuteron spin structure via the measurement of the angular distributions of the analyzing power in the \$\$vec dd o {}^3Hen\$\$ and \$\$vec dd o Hp\$\$ reactions at 140, 200 and 270 MeV. Physics of Particles and Nuclei Letters, 2011, 8, 1078-1080. | 0.1 | 0         |
| 184 | A Novel Method for Sorting Single Wall Carbon Nanotubes by Length. Materials Research Society<br>Symposia Proceedings, 2011, 1284, 179.                                                                                                                                                              | 0.1 | 0         |
| 185 | High performances and low variability of semiconducting-SWCNT thin-film-transistors achieved by shortening tube lengths. Materials Research Society Symposia Proceedings, 2014, 1586, 1.                                                                                                             | 0.1 | 0         |
| 186 | Multidimensional Aspects of Single-Wall Carbon Nanotube Synthesis. , 2014, , 7-17.                                                                                                                                                                                                                   |     | 0         |
| 187 | Publisher's Note: Observation of the intrinsic magnetic susceptibility of highly purified single-wall carbon nanotubes [Phys. Rev. B <b>92</b> , 041402(R) (2015)]. Physical Review B, 2015, 92, .                                                                                                   | 1.1 | 0         |
| 188 | Threshold shift by polymeric cover layer containing phthalocyanine pigment on printed CNT transistors. , 2015, , .                                                                                                                                                                                   |     | 0         |
| 189 | Intertube effects on one-dimensional correlated state of metallic single-wall carbon nanotubes<br>probed by C13 NMR. Physical Review B, 2017, 95, .                                                                                                                                                  | 1.1 | 0         |
| 190 | Field-effect and chemical charge-type modulations of carbon nanotubes using functional polymers for thermoelectric energy harvesters. Journal of Physics: Conference Series, 2018, 1052, 012125.                                                                                                     | 0.3 | 0         |
| 191 | Isotopic Labelling of Confined Carbyne. Angewandte Chemie, 2021, 133, 9985-9989.                                                                                                                                                                                                                     | 1.6 | 0         |
| 192 | STUDY OF THREE-NUCLEON-FORCE VIA NEUTRON -DEUTERON ELASTIC SCATTERING AT 250 MEV. , 2003, , .                                                                                                                                                                                                        |     | 0         |
| 193 | DETERMINATION OF THE GAMOW-TELLER QUENCHING FACTOR VIA THE <sup>90</sup> Zr(n,p) REACTION AT 293 MEV. , 2003, , .                                                                                                                                                                                    |     | 0         |
| 194 | SEARCH FOR SUPER-NARROW DIBARYON RESONANCES BY THE pd → pdX AND pd → ppX REACTIONS. , 2003,                                                                                                                                                                                                          | , · | 0         |
| 195 | POLARIZATION TRANSFER MEASUREMENT FOR DEUTERON-PROTON SCATTERING AND THREE NUCLEON FORCE EFFECTS. , 2003, , .                                                                                                                                                                                        |     | 0         |
| 196 | STUDY OF THE SPIN STRUCTURE OF <sup>3</sup> He( <sup>3</sup> H) VIA \$ vec dd o {}^3{m<br>{He}},n,({}^3{m H} ,p) \$ REACTION AT INTERMEDIATE ENERGIES. , 2003, , .                                                                                                                                   |     | 0         |
| 197 | SEARCH FOR THREE NUCLEON FORCE EFFECTS IN \$ vec pd \$ ELASTIC SCATTERING AT 250 MEV. , 2003, , .                                                                                                                                                                                                    |     | 0         |
| 198 | MEASUREMENT OF THE SPIN ENTANGLEMENT OF TWO-PROTON SYSTEM. , 2004, , .                                                                                                                                                                                                                               |     | 0         |

| #   | Article                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | MEASUREMENT OF NUCLEON-DEUTERON SCATTERING AS A GOOD PROBE TO STUDY THREE NUCLEON FORCES. , 2004, , .                                            |     | 0         |
| 200 | TENSOR ANALYZING POWER OF THE <sup>16</sup> 0(d, <sup>2</sup> He) REACTION AT 0 DEGREES AND STRUCTURE OF THE SPIN-DIPOLE RESONANCES. , 2005, , . |     | 0         |
| 201 | CONSTRUCTION OF POLARIZED PROTON TARGET AND FIRST EXPERIMENT WITH <sup>6</sup> HE. , 2005, , .                                                   |     | 0         |
| 202 | Search for Narrow Dibaryon Resonances via the p + d Scattering. , 2007, , .                                                                      |     | 0         |
| 203 | FOCAL PLANE POLARIMETER FOR A TEST OF EPR PARADOX. , 2007, , .                                                                                   |     | 0         |
| 204 | A NEW TOOL TO CALIBRATE DEUTERON BEAM POLARIZATION AT INTERMEDIATE ENERGIES. , 2007, , .                                                         |     | 0         |
| 205 | Photochemical cleavage of DNA by phosphorus(V) porphyrin derivatives. Nucleic Acids Symposium<br>Series, 1993, , 127-8.                          | 0.3 | 0         |