Mimmo Iannelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179270/publications.pdf

Version: 2024-02-01

331670 315739 1,518 62 21 38 citations h-index g-index papers 63 63 63 1032 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mitigation Measures for Pandemic Influenza in Italy: An Individual Based Model Considering Different Scenarios. PLoS ONE, 2008, 3, e1790.	2.5	143
2	Strain replacement in an epidemic model with super-infection and perfect vaccination. Mathematical Biosciences, 2005, 195, 23-46.	1.9	126
3	Global Behavior of an Age-Structured Epidemic Model. SIAM Journal on Mathematical Analysis, 1991, 22, 1065-1080.	1.9	108
4	A Two-Strain Tuberculosis Model with Age of Infection. SIAM Journal on Applied Mathematics, 2002, 62, 1634-1656.	1.8	91
5	Population dynamics and conservation biology of the over-exploited Mediterranean red coral. Journal of Theoretical Biology, 2007, 244, 416-423.	1.7	88
6	Separable models in age-dependent population dynamics. Journal of Mathematical Biology, 1985, 22, 145-173.	1.9	73
7	Endemic Thresholds and Stability in a Class of Age-Structured Epidemics. SIAM Journal on Applied Mathematics, 1988, 48, 1379-1395.	1.8	73
8	A class of nonlinear diffusion problems in age-dependent population dynamics. Nonlinear Analysis: Theory, Methods & Applications, 1983, 7, 501-529.	1.1	65
9	On the Controllability of the Lotka–McKendrick Model of Population Dynamics. Journal of Mathematical Analysis and Applications, 2001, 253, 142-165.	1.0	57
10	Existence and regularity for a class of integrodifferential equations of parabolic type. Journal of Mathematical Analysis and Applications, 1985, 112, 36-55.	1.0	55
11	On the approximation of the Lotka–McKendrick equation with finite life-span. Journal of Computational and Applied Mathematics, 2001, 136, 245-254.	2.0	42
12	Mathematical modelling for conservation and management of gorgonians corals: youngs and olds, could they coexist?. Ecological Modelling, 2009, 220, 2851-2856.	2.5	42
13	Existence and uniqueness of endemic states for the age-structured S–I–R epidemic model. Mathematical Biosciences, 1998, 150, 177-190.	1.9	38
14	Sexual structure of a highly reproductive, recovering gorgonian population: quantifying reproductive output. Marine Ecology - Progress Series, 2012, 469, 25-36.	1.9	33
15	Asymptotic behavior for an SIS epidemic model and its approximation. Nonlinear Analysis: Theory, Methods & Applications, 1999, 35, 797-814.	1.1	29
16	An age-structured model of epidermis growth. Journal of Mathematical Biology, 2011, 62, 111-141.	1.9	28
17	Stability Analysis of the Gurtin–MacCamy Model. SIAM Journal on Numerical Analysis, 2008, 46, 980-995.	2.3	27
18	Approach to equilibrium in age structured populations with an increasing recruitment process. Journal of Mathematical Biology, 1982, 13, 371-382.	1.9	26

#	Article	IF	CITATIONS
19	Basic mathematical models for the temporal dynamics of HAV in medium-endemicity Italian areas. Vaccine, 2008, 26, 1697-1707.	3.8	26
20	Splitting methods for the numerical approximation of some models of age-structured population dynamics and epidemiology. Applied Mathematics and Computation, 1997, 87, 69-93.	2.2	24
21	Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs, 2015, 34, 505-515.	2.2	24
22	A degenerate nonlinear diffusion problem in age-structured population dynamics. Nonlinear Analysis: Theory, Methods & Applications, 1983, 7, 1411-1429.	1.1	23
23	On a method for studying abstract evolution equations in the hyperbolic case. Communications in Partial Differential Equations, 1976, 1, 585-608.	2.2	22
24	Stability analysis of age-structured population equations by pseudospectral differencing methods. Journal of Mathematical Biology, 2007, 54, 701-720.	1.9	20
25	Numerical methods for the Lotka–McKendrick's equation. Journal of Computational and Applied Mathematics, 2006, 197, 534-557.	2.0	19
26	Scenarios of diffusion and control of an influenza pandemic in Italy. Epidemiology and Infection, 2008, 136, 1650-1657.	2.1	19
27	Age-structured diffusion in a multi-layer environment. Nonlinear Analysis: Real World Applications, 2005, 6, 207-223.	1.7	18
28	Global boundedness of the solutions to a Gurtin-MacCamy system. Nonlinear Differential Equations and Applications, 2002, 9, 197-216.	0.8	17
29	The HIV/AIDS epidemics among drug injectors: A study of contact structure through a mathematical model. Mathematical Biosciences, 1997, 139, 25-58.	1.9	15
30	A fourthâ€order method for numerical integration of age―and sizeâ€structured population models. Numerical Methods for Partial Differential Equations, 2009, 25, 918-930.	3.6	15
31	Demographic Change and Immigration in Age-structured Epidemic Models. Mathematical Population Studies, 2007, 14, 169-191.	2.2	14
32	Optimal Screening in Structured SIR Epidemics. Mathematical Modelling of Natural Phenomena, 2012, 7, 12-27.	2.4	14
33	An AIDS model with distributed incubation and variable infectiousness: Applications to IV drug users in Latium, Italy. European Journal of Epidemiology, 1992, 8, 585-593.	5.7	11
34	Neoclassical growth with endogenous age distribution. Poverty vs low-fertility traps as steady states of demographic transitions. Journal of Population Economics, 2013, 26, 1457-1484.	5.6	11
35	On a certain class of semilinear evolution systems. Journal of Mathematical Analysis and Applications, 1976, 56, 351-367.	1.0	9
36	Mathematical Problems in the Description of Age Structured Populations. Lecture Notes in Biomathematics, 1985, , 19-32.	0.3	8

#	Article	IF	CITATIONS
37	Convergence in a multi-layer population model with age-structure. Nonlinear Analysis: Real World Applications, 2007, 8, 887-902.	1.7	7
38	Mathematical modeling of bacterial virulence and host–pathogen interactions in the Dictyostelium/Pseudomonas system. Journal of Theoretical Biology, 2011, 270, 19-24.	1.7	7
39	Two-sex age structured dynamics in a fixed sex-ratio population. Nonlinear Analysis: Real World Applications, 2012, 13, 2562-2577.	1.7	7
40	Control Strategies for TB Epidemics. SIAM Journal on Applied Mathematics, 2017, 77, 82-107.	1.8	7
41	\$R_0\$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences and Engineering, 2014, 11, 929-945.	1.9	6
42	Growth Patterns in Long-Lived Coral Species. , 2017, , 595-626.		6
43	Polyp longevity in a precious gorgonian coral: hints toward a demographic approach to polyp dynamics. Coral Reefs, 2020, 39, 1125-1136.	2.2	5
44	Numerical Analysis of a Model for the Spread of HIV/AIDS. SIAM Journal on Numerical Analysis, 1996, 33, 864-882.	2.3	4
45	Time evolution for a model of epidermis growth. Journal of Evolution Equations, 2013, 13, 509-533.	1.1	4
46	Demography of Animal Forests: The Example of Mediterranean Gorgonians., 2017,, 529-548.		4
47	Approximation of a population dynamics model by parabolic regularization. Mathematical Methods in the Applied Sciences, 2013, 36, 1229-1239.	2.3	3
48	Dynamics of partially mitigated multi-phasic epidemics at low susceptible depletion: phases of COVID-19 control in Italy as case study. Mathematical Biosciences, 2021, 340, 108671.	1.9	2
49	Harvesting Control for an Age-Structured Population in a Multilayered Habitat. Journal of Optimization Theory and Applications, 2009, 142, 107-124.	1.5	1
50	Stabilization of the Gurtin–MacCamy population system. Journal of Evolution Equations, 2009, 9, 727-745.	1.1	1
51	The steady state of epidermis: mathematical modeling and numerical simulations. Journal of Mathematical Biology, 2016, 73, 1595-1626.	1.9	1
52	A system of nonlinear degenerate parabolic equations Journal Fur Die Reine Und Angewandte Mathematik, 1986, 1986, 1-15.	0.9	0
53	Epidemics in Wildlife. Mathematical Population Studies, 2006, 13, 117-118.	2.2	0
54	Facing Emerging and Re-emerging Diseases. Mathematical Population Studies, 2006, 13, 179-179.	2.2	0

#	Article	lF	CITATIONS
55	Why Age Structure? An Introduction. Lecture Notes on Mathematical Modelling in the Life Sciences, 2017, , 1-48.	0.4	O
56	Epidemics and Demography. Lecture Notes on Mathematical Modelling in the Life Sciences, 2017, , 277-319.	0.4	0
57	Numerical Methods for the Linear Model. Lecture Notes on Mathematical Modelling in the Life Sciences, 2017, , 89-122.	0.4	O
58	Nonlinear Models. Lecture Notes on Mathematical Modelling in the Life Sciences, 2017, , 141-172.	0.4	0
59	Stability of Equilibria. Lecture Notes on Mathematical Modelling in the Life Sciences, 2017, , 173-200.	0.4	O
60	Numerical Methods for the Nonlinear Model. Lecture Notes on Mathematical Modelling in the Life Sciences, 2017, , 201-217.	0.4	0
61	37 Demography and Conservation of Deep Corals: The Study of Population Structure and Dynamics. Coral Reefs of the World, 2019, , 423-434.	0.7	0
62	The Basal Layer of the Epidermis: A Mathematical Model for Cell Production Under a Surface Density Constraint. SIAM Journal on Applied Mathematics, 2020, 80, 543-571.	1.8	О