
Mirjam Schenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3179186/publications.pdf Version: 2024-02-01

MIDIAM SCHENK

#	Article	IF	CITATIONS
1	Current Limitations and Novel Perspectives in Pancreatic Cancer Treatment. Cancers, 2022, 14, 985.	1.7	25
2	BCG hydrogel promotes CTSS-mediated antigen processing and presentation, thereby suppressing metastasis and prolonging survival in melanoma. , 2022, 10, e004133.		8
3	Distinct Stromal and Immune Features Collectively Contribute to Long-Term Survival in Pancreatic Cancer. Frontiers in Immunology, 2021, 12, 643529.	2.2	19
4	Cannabinoid Receptor Type-2 in B Cells Is Associated with Tumor Immunity in Melanoma. Cancers, 2021, 13, 1934.	1.7	5
5	Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma. Frontiers in Immunology, 2020, 11, 2105.	2.2	164
6	Characterization of a Myeloid Activation Signature That Correlates with Survival in Melanoma Patients. Cancers, 2020, 12, 1431.	1.7	1
7	Heart-Specific Immune Responses in an Animal Model of Autoimmune-Related Myocarditis Mitigated by an Immunoproteasome Inhibitor and Genetic Ablation. Circulation, 2020, 141, 1885-1902.	1.6	53
8	Clinical and molecular insights into BCG immunotherapy for melanoma. Journal of Internal Medicine, 2020, 288, 625-640.	2.7	33
9	IL-32Î ³ potentiates tumor immunity in melanoma. JCI Insight, 2020, 5, .	2.3	20
10	<i>Mycobacterium tuberculosis</i> Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. Journal of Immunology, 2018, 200, 3244-3258.	0.4	18
11	Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Frontiers in Immunology, 2017, 8, 1617.	2.2	43
12	Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae. Infection and Immunity, 2016, 84, 2429-2438.	1.0	34
13	010 Polycytotoxic T cells protect against intracellular infection. Journal of Investigative Dermatology, 2016, 136, S2.	0.3	0
14	S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages. PLoS Pathogens, 2016, 12, e1005705.	2.1	77
15	Combinatorial code governing cellular responses to complex stimuli. Nature Communications, 2015, 6, 6847.	5.8	32
16	IL-32 is a molecular marker of a host defense network in human tuberculosis. Science Translational Medicine, 2014, 6, 250ra114.	5.8	110
17	Interleukinâ€1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to <scp>T</scp> cells. Immunology, 2014, 141, 174-180.	2.0	80
18	Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses. Science, 2013, 339, 1448-1453.	6.0	359

MIRJAM SCHENK

#	Article	IF	CITATIONS
19	Galectin-3 Regulates the Innate Immune Response of Human Monocytes. Journal of Infectious Diseases, 2013, 207, 947-956.	1.9	41
20	NOD2 triggers an interleukin-32–dependent human dendritic cell program in leprosy. Nature Medicine, 2012, 18, 555-563.	15.2	118
21	The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nature Immunology, 2012, 13, 1155-1161.	7.0	363
22	CX3CR1 defines functionally distinct intestinal mononuclear phagocyte subsets which maintain their respective functions during homeostatic and inflammatory conditions. European Journal of Immunology, 2011, 41, 773-779.	1.6	102
23	IRF4 regulates IL-17A promoter activity and controls RORÎ ³ t-dependent Th17 colitis in vivo. Inflammatory Bowel Diseases, 2011, 17, 1343-1358.	0.9	83
24	Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages. Science Translational Medicine, 2011, 3, 104ra102.	5.8	442
25	T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22593-22598.	3.3	206
26	Quantitative isolation of mouse and human intestinal intraepithelial lymphocytes by elutriation centrifugation. Journal of Immunological Methods, 2009, 344, 26-34.	0.6	11
27	TLR2 Looks at Lipoproteins. Immunity, 2009, 31, 847-849.	6.6	87
28	Divergence of Macrophage Phagocytic and Antimicrobial Programs in Leprosy. Cell Host and Microbe, 2009, 6, 343-353.	5.1	175
29	Convergence of IL-1Î ² and VDR Activation Pathways in Human TLR2/1-Induced Antimicrobial Responses. PLoS ONE, 2009, 4, e5810.	1.1	268
30	The mucosal immune system at the gastrointestinal barrier. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2008, 22, 391-409.	1.0	134
31	The transcription factor IFN regulatory factor–4 controls experimental colitis in mice via T cell–derived IL-6. Journal of Clinical Investigation, 2008, 118, 2415-26.	3.9	94
32	ILâ€1beta triggers monocytes to differentiate into CD209+ macrophages. FASEB Journal, 2008, 22, 539-539.	0.2	0
33	TREM-1–expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. Journal of Clinical Investigation, 2007, 117, 3097-3106.	3.9	321
34	Adaptations of intestinal macrophages to an antigen-rich environment. Seminars in Immunology, 2007, 19, 84-93.	2.7	61
35	Macrophages Expressing Triggering Receptor Expressed on Myeloid Cells-1 Are Underrepresented in the Human Intestine. Journal of Immunology, 2005, 174, 517-524.	0.4	124