Thomas J Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3178817/publications.pdf

Version: 2024-02-01

291 papers

21,952 citations

13865 67 h-index 9861

g-index

305 all docs

305 docs citations

305 times ranked 15833 citing authors

#	Article	IF	Citations
1	Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry, 2001, 495, 134-145.	3.8	1,289
2	Characterization of Highâ€Surfaceâ€Area Electrocatalysts Using a Rotating Disk Electrode Configuration. Journal of the Electrochemical Society, 1998, 145, 2354-2358.	2.9	1,071
3	Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2014, 4, 3800-3821.	4.1	1,006
4	Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells, 2001, 1, 105-116.	2.4	986
5	Oxygen Reduction on Carbon-Supported Ptâ^'Ni and Ptâ^'Co Alloy Catalysts. Journal of Physical Chemistry B, 2002, 106, 4181-4191.	2.6	880
6	Surface Composition Effects in Electrocatalysis:  Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces. Journal of Physical Chemistry B, 2002, 106, 11970-11979.	2.6	779
7	Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis, 2012, 2, 864-890.	11.2	728
8	Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16, 925-931.	27.5	696
9	Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta, 2002, 47, 3787-3798.	5.2	514
10	The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. Journal of Electroanalytical Chemistry, 2001, 508, 41-47.	3.8	425
11	Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chemistry of Materials, 2016, 28, 6591-6604.	6.7	347
12	Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development. Journal of the Electrochemical Society, 2017, 164, F387-F399.	2.9	347
13	Oxygen Evolution Reaction—The Enigma in Water Electrolysis. ACS Catalysis, 2018, 8, 9765-9774.	11.2	345
14	Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nature Materials, 2018, 17, 827-833.	27.5	344
15	Effect of Temperature on Surface Processes at the Pt(111)â^'Liquid Interface:Â Hydrogen Adsorption, Oxide Formation, and CO Oxidation. Journal of Physical Chemistry B, 1999, 103, 8568-8577.	2.6	315
16	Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research, 2015, 48, 154-162.	15.6	313
17	Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Scientific Reports, 2015, 5, 12167.	3.3	309
18	IrO ₂ -TiO ₂ : A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 2346-2352.	11.2	264

#	Article	IF	CITATIONS
19	Oxygen Evolution Reaction on La _{1–<i>x</i>} Sr _{<i>x</i>} CoO ₃ Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties. Chemistry of Materials, 2015, 27, 7662-7672.	6.7	259
20	Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. Journal of Power Sources, 2008, 176, 428-434.	7.8	258
21	Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 5231-5240.	13.7	250
22	Bimetallic Aerogels: Highâ€Performance Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 9849-9852.	13.8	246
23	Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes. Journal of Electroanalytical Chemistry, 2002, 524-525, 252-260.	3.8	232
24	Electrocatalytic Activity of PtRu Alloy Colloids for CO and CO/H2 Electrooxidation:  Stripping Voltammetry and Rotating Disk Measurements. Langmuir, 1997, 13, 2591-2595.	3.5	227
25	PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts: A Combined XPS, AFM, HRTEM, and RDE Study. Journal of the Electrochemical Society, 1998, 145, 925-931.	2.9	226
26	Rotating Disk Electrode Measurements on the CO Tolerance of a Highâ€Surface Area Pt/Vulcan Carbon Fuel Cell Catalyst. Journal of the Electrochemical Society, 1999, 146, 1296-1304.	2.9	214
27	Oxygen electrocatalysis in alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification. Electrochimica Acta, 2002, 47, 3765-3776.	5.2	209
28	The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Physical Chemistry Chemical Physics, 2003, 5, 4242-4251.	2.8	203
29	Oxygen Reduction on Ru[sub 1.92]Mo[sub 0.08]SeO[sub 4], Ru/Carbon, and Pt/Carbon in Pure and Methanol-Containing Electrolytes. Journal of the Electrochemical Society, 2000, 147, 2620.	2.9	200
30	Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst. Electrochemistry Communications, 1999, 1, 1-4.	4.7	196
31	Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 5182-5191.	6.7	172
32	Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. Journal of Power Sources, 2002, 105, 297-304.	7.8	162
33	Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst. Journal of the Electrochemical Society, 2014, 161, H121-H128.	2.9	140
34	Electrochemical COâ,, Reduction – A Critical View on Fundamentals, Materials and Applications. Chimia, 2015, 69, 769.	0.6	130
35	Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers. Advanced Materials, 2015, 27, 6317-6322.	21.0	129
36	Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolyte. Physical Chemistry Chemical Physics, 2003, 5, 400-406.	2.8	128

#	Article	IF	Citations
37	Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catalysis, 2021, 11, 3094-3114.	11.2	115
38	Unraveling Thermodynamics, Stability, and Oxygen Evolution Activity of Strontium Ruthenium Perovskite Oxide. ACS Catalysis, 2017, 7, 3245-3256.	11.2	113
39	Composite Electrode Boosts the Activity of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ} Perovskite and Carbon toward Oxygen Reduction in Alkaline Media. ACS Catalysis, 2014, 4, 1061-1070.	11.2	111
40	The Effect of Platinum Loading and Surface Morphology on Oxygen Reduction Activity. Electrocatalysis, 2016, 7, 287-296.	3.0	106
41	Design Principles of Bipolar Electrochemical Co-Electrolysis Cells for Efficient Reduction of Carbon Dioxide from Gas Phase at Low Temperature. Journal of the Electrochemical Society, 2019, 166, F34-F43.	2.9	106
42	On the CO tolerance of novel colloidal PdAu/carbon electrocatalysts. Journal of Electroanalytical Chemistry, 2001, 501, 132-140.	3.8	105
43	Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development. Nano Energy, 2016, 29, 4-28.	16.0	104
44	Polymer Electrolyte Water Electrolysis: Correlating Performance and Porous Transport Layer Structure: Part II. Electrochemical Performance Analysis. Journal of the Electrochemical Society, 2019, 166, F555-F565.	2.9	103
45	Superior Bifunctional Electrocatalytic Activity of Ba _{0.5} Sr _{0.5} /Carbon Composite Electrodes: Insight into the Local Electronic Structure. Advanced Energy Materials, 2015, 5, 1402033.	19.5	102
46	Oxygen Evolution Reaction on Perovskites: A Multieffect Descriptor Study Combining Experimental and Theoretical Methods. ACS Catalysis, 2018, 8, 9567-9578.	11.2	98
47	Potential Oscillations and S-Shaped Polarization Curve in the Continuous Electro-oxidation of CO on Platinum Single-crystal Electrodes. Journal of Physical Chemistry B, 2001, 105, 8381-8386.	2.6	94
48	Performance and Durability of Membrane Electrode Assemblies Based on Radiation-Grafted FEP-g-Polystyrene Membranes. Fuel Cells, 2004, 4, 196-207.	2.4	94
49	Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)distribution. Journal of the Electrochemical Society, 2015, 162, F310-F316.	2.9	92
50	Formic Acid Oxidation on Pure and Bi-Modified Pt(111):Â Temperature Effects. Langmuir, 2000, 16, 8159-8166.	3.5	91
51	<i>Operando</i> X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction. Energy and Environmental Science, 2019, 12, 3038-3052.	30.8	90
52	Towards a generic understanding of oxygen evolution reaction kinetics in polymer electrolyte water electrolysis. Energy and Environmental Science, 2020, 13, 2153-2166.	30.8	90
53	Temperature-Dependent Surface Electrochemistry on Pt Single Crystals in Alkaline Electrolyte:Â Part 1:Â CO Oxidation. Journal of Physical Chemistry B, 2001, 105, 12082-12086.	2.6	89
54	Electrocatalysis of Perovskites: The Influence of Carbon on the Oxygen Evolution Activity. Journal of the Electrochemical Society, 2015, 162, F579-F586.	2.9	88

#	Article	IF	Citations
55	Polymer Electrolyte Water Electrolysis: Correlating Porous Transport Layer Structural Properties and Performance: Part I. Tomographic Analysis of Morphology and Topology. Journal of the Electrochemical Society, 2019, 166, F270-F281.	2.9	88
56	Hierarchically Structured Porous Transport Layers for Polymer Electrolyte Water Electrolysis. Advanced Energy Materials, 2020, 10, 1903216.	19.5	87
57	Cell Performance Determining Parameters in High Pressure Water Electrolysis. Electrochimica Acta, 2016, 211, 989-997.	5.2	83
58	Durability and Reliability in High-Temperature Reformed Hydrogen PEFCs. ECS Transactions, 2006, 3, 861-869.	0.5	79
59	Pt nanoparticles supported on Sb-doped SnO ₂ porous structures: developments and issues. Physical Chemistry Chemical Physics, 2014, 16, 13672-13681.	2.8	78
60	Nanostructuring Noble Metals as Unsupported Electrocatalysts for Polymer Electrolyte Fuel Cells. Advanced Energy Materials, 2017, 7, 1700548.	19.5	76
61	Pt-Ni Aerogels as Unsupported Electrocatalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2016, 163, F998-F1003.	2.9	74
62	Durability and Degradation in High-Temperature Polymer Electrolyte Fuel Cells. ECS Transactions, 2006, 1, 19-31.	0.5	73
63	CO adsorption and kinetics on well-characterized Pd films on Pt() in alkaline solutions. Surface Science, 2002, 506, 287-296.	1.9	71
64	Electrochemical Flow-Cell Setup for In Situ X-ray Investigations. Journal of the Electrochemical Society, 2016, 163, H906-H912.	2.9	71
65	The Oxygen Reduction Reaction on Thin Palladium Films Supported on a $Pt(111)$ Electrode. Journal of Physical Chemistry B, 2003, 107, 9813-9819.	2.6	70
66	Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development. Current Opinion in Electrochemistry, 2017, 5, 20-26.	4.8	69
67	Influence of Operating Conditions and Material Properties on the Mass Transport Losses of Polymer Electrolyte Water Electrolysis. Journal of the Electrochemical Society, 2017, 164, F973-F980.	2.9	69
68	Unsupported Ptâ€Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. Angewandte Chemie - International Edition, 2017, 56, 10707-10710.	13.8	65
69	Simulated start–stop as a rapid aging tool for polymer electrolyte fuel cell electrodes. Journal of Power Sources, 2011, 196, 5564-5572.	7.8	63
70	Highly Active Nanoperovskite Catalysts for Oxygen Evolution Reaction: Insights into Activity and Stability of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{2+δ} and PrBaCo ₂ O _{5+δ} . Advanced Functional Materials, 2018, 28, 1804355.	14.9	63
71	Communication—Neutron Radiography of the Water/Gas Distribution in the Porous Layers of an Operating Electrolyser. Journal of the Electrochemical Society, 2016, 163, F3009-F3011.	2.9	62
72	Design and Synthesis of Ir/Ru Pyrochlore Catalysts for the Oxygen Evolution Reaction Based on Their Bulk Thermodynamic Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37748-37760.	8.0	61

#	Article	IF	CITATIONS
73	Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22203-22212.	8.0	59
74	Combining SAXS and XAS To Study the <i>Operando</i> Degradation of Carbon-Supported Pt-Nanoparticle Fuel Cell Catalysts. ACS Catalysis, 2018, 8, 7000-7015.	11.2	58
75	Decarbonization pathways of the Swiss cement industry towards net zero emissions. Journal of Cleaner Production, 2021, 288, 125413.	9.3	58
76	Performance of Different Carbon Electrode Materials: Insights into Stability and Degradation under Real Vanadium Redox Flow Battery Operating Conditions. Journal of the Electrochemical Society, 2017, 164, A1608-A1615.	2.9	57
77	Advanced Water Management in PEFCs: Diffusion Layers with Patterned Wettability. Journal of the Electrochemical Society, 2016, 163, F1389-F1398.	2.9	56
78	Investigating the Role of Strain toward the Oxygen Reduction Activity on Model Thin Film Pt Catalysts. ACS Catalysis, 2016, 6, 7566-7576.	11.2	56
79	High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. International Journal of Hydrogen Energy, 2017, 42, 12076-12086.	7.1	56
80	Advanced Water Management in PEFCs: Diffusion Layers with Patterned Wettability. Journal of the Electrochemical Society, 2016, 163, F1038-F1048.	2.9	54
81	Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo ₂ O _{5+<i>δ</i>} . Angewandte Chemie - International Edition, 2021, 60, 14609-14619.	13.8	54
82	Electrochemical Hydrogen Compression: Efficient Pressurization Concept Derived from an Energetic Evaluation. Journal of the Electrochemical Society, 2017, 164, F1187-F1195.	2.9	53
83	Influence of Cross-Linking on Performance of Radiation-Grafted and Sulfonated FEP 25 Membranes in H[sub 2]-O[sub 2] PEFC. Journal of the Electrochemical Society, 2005, 152, A93.	2.9	51
84	Polybenzimidazole/Acid Complexes as High-Temperature Membranes., 2008,, 63-124.		51
85	On a new degradation mode for high-temperature polymer electrolyte fuel cells: How bipolar plate degradation affects cell performance. Electrochimica Acta, 2011, 56, 4237-4242.	5.2	51
86	High-resolution and large-area nanoparticle arrays using EUV interference lithography. Nanoscale, 2015, 7, 7386-7393.	5.6	51
87	Comparing the kinetic activation energy of the oxygen evolution and reduction reactions. Electrochimica Acta, 2018, 281, 466-471.	5.2	50
88	Multicarrier Energy Systems: Shaping Our Energy Future. Proceedings of the IEEE, 2020, 108, 1437-1456.	21.3	50
89	Celtec-V. Journal of the Electrochemical Society, 2007, 154, B981.	2.9	48
90	Investigation of Mass Transport Losses in Polymer Electrolyte Electrolysis Cells. ECS Transactions, 2015, 69, 1141-1148.	0.5	48

#	Article	IF	Citations
91	A simple one-pot Adams method route to conductive high surface area IrO ₂ –TiO ₂ materials. New Journal of Chemistry, 2016, 40, 1834-1838.	2.8	46
92	Proton Transport in Catalyst Layers of a Polymer Electrolyte Water Electrolyzer: Effect of the Anode Catalyst Loading. Journal of the Electrochemical Society, 2019, 166, F214-F220.	2.9	46
93	Bi adsorption on Pt(111) in perchloric acid solution: A rotating ring–disk electrode and XPS study. Physical Chemistry Chemical Physics, 2000, 2, 4379-4386.	2.8	45
94	Operando X-ray Tomographic Microscopy Imaging of HT-PEFC: A Comparative Study of Phosphoric Acid Electrolyte Migration. Journal of the Electrochemical Society, 2016, 163, F842-F847.	2.9	45
95	<i>Operando</i> X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni _{1â^'x} Fe _x O _y nanoparticles. Journal of Materials Chemistry A, 2018, 6, 24534-24549.	10.3	45
96	Probing the solid–liquid interface with tender x rays: A new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source. Review of Scientific Instruments, 2020, 91, 023103.	1.3	45
97	Oscillatory behavior in the electrochemical oxidation of formic acid on Pt(100): rotation and temperature effects. Journal of Electroanalytical Chemistry, 2001, 500, 36-43.	3.8	44
98	Capacitive electronic metal-support interactions: Outer surface charging of supported catalyst particles. Physical Review B, 2017, 96, .	3.2	44
99	Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems. ACS Applied Materials & Diterfaces, 2019, 11, 34787-34795.	8.0	43
100	Advanced Water Management in PEFCs: Diffusion Layers with Patterned Wettability. Journal of the Electrochemical Society, 2016, 163, F788-F801.	2.9	42
101	Tackling capacity fading in vanadium flow batteries with amphoteric membranes. Journal of Power Sources, 2017, 368, 68-72.	7.8	42
102	Communicationâ€"Contribution of Catalyst Layer Proton Transport Resistance to Voltage Loss in Polymer Electrolyte Water Electrolyzers. Journal of the Electrochemical Society, 2018, 165, J3016-J3018.	2.9	42
103	Tackling Capacity Fading in Vanadium Redox Flow Batteries with Amphoteric Polybenzimidazole/Nafion Bilayer Membranes. ChemSusChem, 2019, 12, 2620-2627.	6.8	42
104	Oxygen evolution reaction activity and underlying mechanism of perovskite electrocatalysts at different pH. Materials Advances, 2021, 2, 345-355.	5.4	42
105	Fast Xâ€ray Tomographic Microscopy: Investigating Mechanisms of Performance Drop during Freeze Starts of Polymer Electrolyte Fuel Cells. ChemElectroChem, 2015, 2, 1551-1559.	3.4	41
106	Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells, 2001, 1, 105-116.	2.4	41
107	Stability and Degradation Mechanisms of Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15297-15306.	8.0	40
108	Pt/IrO 2 \hat{a} \in "TiO 2 cathode catalyst for low temperature polymer electrolyte fuel cell \hat{a} \in "Application in MEAs, performance and stability issues. Catalysis Today, 2016, 262, 161-169.	4.4	40

#	Article	IF	CITATIONS
109	On the Oxidation State of Cu ₂ O upon Electrochemical CO ₂ Reduction: An XPS Study. ChemPhysChem, 2019, 20, 3120-3127.	2.1	40
110	Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â€f} Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media. ChemElectroChem, 2014, 1, 338-342.	3.4	39
111	Amphoteric Ionâ€Exchange Membranes with Significantly Improved Vanadium Barrier Properties for Allâ€Vanadium Redox Flow Batteries. ChemSusChem, 2017, 10, 2767-2777.	6.8	36
112	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 11707-11712.	13.8	36
113	Catalyzed SnO ₂ Thin Films: Theoretical and Experimental Insights into Fabrication and Electrocatalytic Properties. Journal of Physical Chemistry C, 2014, 118, 11292-11302.	3.1	35
114	Correlating Electrolyte Inventory and Lifetime of HT-PEFC by Accelerated Stress Testing. Journal of the Electrochemical Society, 2015, 162, F1367-F1372.	2.9	35
115	Impact of Hydrophobic Coating on Mass Transport Losses in PEFCs. Journal of the Electrochemical Society, 2015, 162, F1243-F1252.	2.9	35
116	Long-term development of the industrial sector – Case study about electrification, fuel switching, and CCS in the USA. Computers and Chemical Engineering, 2020, 133, 106602.	3.8	35
117	Transient and Steady State Two-Phase Flow in Anodic Porous Transport Layer of Proton Exchange Membrane Water Electrolyzer. Journal of the Electrochemical Society, 2020, 167, 084509.	2.9	35
118	Vanadium (V) reduction reaction on modified glassy carbon electrodes – Role of oxygen functionalities and microstructure. Carbon, 2016, 109, 472-478.	10.3	33
119	Timeâ€Resolved Potentialâ€Induced Changes in Fe/N/Câ€Catalysts Studied by In Situ Modulation Excitation Xâ€Ray Absorption Spectroscopy. Advanced Energy Materials, 2022, 12, .	19.5	33
120	Radiation Grafted Ion-Conducting Membranes: The Influence of Variations in Base Film Nanostructure. Macromolecules, 2016, 49, 4253-4264.	4.8	32
121	Co-electrolysis of CO2 and H2O: From electrode reactions to cell-level development. Current Opinion in Electrochemistry, 2020, 23, 89-95.	4.8	32
122	Dual Spectrum Neutron Radiography: Identification of Phase Transitions between Frozen and Liquid Water. Physical Review Letters, 2014, 112, 248301.	7.8	31
123	Effects of PEMFC Operational History under Dry/Wet Conditions on Additional Voltage Losses due to lonomer Migration. Journal of the Electrochemical Society, 2020, 167, 144513.	2.9	31
124	Surface processes and electrocatalysis on the Pt(hkl)/Bi-solution interface. Physical Chemistry Chemical Physics, 2001, 3, 3879-3890.	2.8	30
125	Evaluation of Neutron Imaging for Measuring Phosphoric Acid Distribution in High Temperature PEFCs. Journal of the Electrochemical Society, 2014, 161, F192-F198.	2.9	30
126	Second Cycle Is Dead: Advanced Electrode Diagnostics for High-Temperature Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F500-F505.	2.9	30

#	Article	IF	Citations
127	Effect of ball milling on the electrocatalytic activity of Ba _{0.5} Sr _{0.5} towards the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 13130-13137.	10.3	30
128	Characterizing Local O ₂ Diffusive Losses in GDLs of PEFCs Using Simplified Flow Field Patterns ("2Dâ€,"1Dâ€,"0Dâ€). Journal of the Electrochemical Society, 2013, 160, F659-F669.	2.9	29
129	Stabilization of Pt Nanoparticles Due to Electrochemical Transistor Switching of Oxide Support Conductivity. Chemistry of Materials, 2017, 29, 2831-2843.	6.7	29
130	Examining the surface evolution of LaTiOxNy an oxynitride solar water splitting photocatalyst. Nature Communications, 2020, 11, 1728.	12.8	29
131	Breaking through the Cracks: On the Mechanism of Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F1176-F1183.	2.9	28
132	Surface Characterization and Electrochemical Behavior of Well-Defined Ptâ^'Pd $\{111\}$ Single-Crystal Surfaces:Â A Comparative Study Using Pt $\{111\}$ and Palladium-Modified Pt $\{111\}$ Electrodes. Langmuir, 2002, 18, 6969-6975.	3.5	27
133	Towards re-electrification of hydrogen obtained from the power-to-gas process by highly efficient H ₂ /O ₂ polymer electrolyte fuel cells. RSC Advances, 2014, 4, 56139-56146.	3.6	27
134	Understanding the Influence of Carbon on the Oxygen Reduction and Evolution Activities of BSCF/Carbon Composite Electrodes in Alkaline Electrolyte. ECS Transactions, 2014, 58, 9-18.	0.5	26
135	Alloying Behavior of Selfâ€Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, 13446-13450.	3.3	25
136	Influence of Carbon Material Properties on Activity and Stability of the Negative Electrode in Vanadium Redox Flow Batteries: A Model Electrode Study. ACS Applied Energy Materials, 2018, 1, 1166-1174.	5.1	25
137	Facile deposition of Pt nanoparticles on Sb-doped SnO ₂ support with outstanding active surface area for the oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 2672-2685.	4.1	25
138	Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-Î: Insights into Structural and Electronic Effects to Enhance Oxygen Evolution Catalyst Stability. Catalysts, 2019, 9, 263.	3.5	25
139	Effect of Acid Washing on the Oxygen Reduction Reaction Activity of Pt-Cu Aerogel Catalysts. Electrochimica Acta, 2017, 233, 210-217.	5.2	24
140	Droplet and Percolation Network Interactions in a Fuel Cell Gas Diffusion Layer. Journal of the Electrochemical Society, 2020, 167, 084506.	2.9	24
141	Durability of Unsupported Pt-Ni Aerogels in PEFC Cathodes. Journal of the Electrochemical Society, 2017, 164, F1136-F1141.	2.9	23
142	Comment on "How green is blue hydrogen?― Energy Science and Engineering, 2022, 10, 1944-1954.	4.0	23
143	When Size Matters: Active Area Dependence of PEFC Cold Start Capability. Journal of the Electrochemical Society, 2015, 162, F1231-F1235.	2.9	22
144	Homogeneity and elemental distribution in self-assembled bimetallic Pd–Pt aerogels prepared by a spontaneous one-step gelation process. Physical Chemistry Chemical Physics, 2016, 18, 20640-20650.	2.8	22

#	Article	IF	Citations
145	Unraveling two-phase transport in porous transport layer materials for polymer electrolyte water electrolysis. Journal of Materials Chemistry A, 2021, 9, 22102-22113.	10.3	22
146	Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and <i>in situ</i> analysis. Physical Chemistry Chemical Physics, 2018, 20, 23664-23673.	2.8	21
147	High-Temperature Polymer Electrolyte Fuel Cells: Durability Insights. , 2009, , 199-221.		21
148	Potential Pitfalls in the <i>Operando</i> XAS Study of Oxygen Evolution Electrocatalysts. ACS Energy Letters, 2022, 7, 1735-1740.	17.4	21
149	The Effect of Platinum Nanoparticle Distribution on Oxygen Electroreduction Activity and Selectivity. ChemCatChem, 2014, 6, 1410-1418.	3.7	20
150	Statistical Analysis of Isothermal Cold Starts of PEFCs: Impact of Gas Diffusion Layer Properties. Journal of the Electrochemical Society, 2016, 163, F1258-F1266.	2.9	20
151	Influence of surface oxygen groups on $V(II)$ oxidation reaction kinetics. Electrochemistry Communications, 2017, 75, 13-16.	4.7	20
152	Structural Analysis and Electrochemical Properties of Bimetallic Palladium–Platinum Aerogels Prepared by a Twoâ€Step Gelation Process. ChemCatChem, 2017, 9, 798-808.	3.7	20
153	Distinction between super-cooled water and ice with high duty cycle time-of-flight neutron imaging. Review of Scientific Instruments, 2019, 90, .	1.3	20
154	Effects of Gas Diffusion Layer Substrates on PEFC Water Management: Part I. Operando Liquid Water Saturation and Gas Diffusion Properties. Journal of the Electrochemical Society, 2021, 168, 074505.	2.9	20
155	Particle-Support Interferences in Small-Angle X-Ray Scattering from Supported-Catalyst Materials. Physical Review Applied, 2015, 3, .	3.8	19
156	Think Different! Carbon Corrosion Mitigation Strategy in High Temperature PEFC: A Rapid Aging Study. Journal of the Electrochemical Society, 2015, 162, F291-F297.	2.9	19
157	Bifunctional Ion-Conducting Polymer Electrolyte for the Vanadium Redox Flow Battery with High Selectivity. Journal of the Electrochemical Society, 2016, 163, A2563-A2570.	2.9	19
158	Boosting Pt oxygen reduction reaction activity by tuning the tin oxide support. Electrochemistry Communications, 2017, 83, 90-95.	4.7	19
159	Unsupported Pt ₃ Ni Aerogels as Corrosion Resistant PEFC Anode Catalysts under Gross Fuel Starvation Conditions. Journal of the Electrochemical Society, 2018, 165, F3001-F3006.	2.9	19
160	Communicationâ€"Pt-Doped Thin Membranes for Gas Crossover Suppression in Polymer Electrolyte Water Electrolysis. Journal of the Electrochemical Society, 2019, 166, F873-F875.	2.9	19
161	Selective Visualization of Water in Fuel Cell Gas Diffusion Layers with Neutron Dark-Field Imaging. Journal of the Electrochemical Society, 2019, 166, F149-F157.	2.9	19
162	Investigation and Optimisation of Operating Conditions for Low-Temperature CO ₂ Reduction to CO in a Forward-Bias Bipolar-Membrane Electrolyser. Journal of the Electrochemical Society, 2021, 168, 043506.	2.9	19

#	Article	IF	CITATIONS
163	Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy. Journal of Synchrotron Radiation, 2014, 21, 1319-1326.	2.4	19
164	Development Status of High-Temperature PBI-based Membrane Electrode Assemblies. ECS Transactions, 2009, 16, 263-270.	0.5	18
165	Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes. Journal of Power Sources, 2015, 279, 517-521.	7.8	18
166	Impact of Support Physicochemical Properties on the CO Oxidation and the Oxygen Reduction Reaction Activity of Pt/SnO ₂ Electrocatalysts. Journal of Physical Chemistry C, 2018, 122, 4739-4746.	3.1	18
167	A Method for Spatial Quantification of Water in Microporous Layers of Polymer Electrolyte Fuel Cells by X-ray Tomographic Microscopy. ACS Applied Materials & Interfaces, 2021, 13, 16227-16237.	8.0	18
168	Electrochemical Surface Area Quantification, CO ₂ Reduction Performance, and Stability Studies of Unsupported Three-Dimensional Au Aerogels versus Carbon-Supported Au Nanoparticles. ACS Materials Au, 2022, 2, 278-292.	6.0	18
169	Sputtered Cathodes for Polymer Electrolyte Fuel Cells: Insights into Potentials, Challenges and Limitations. Chimia, 2012, 66, 110.	0.6	17
170	Advanced Cathode Materials for Polymer Electrolyte Fuel Cells Based on Pt/ Metal Oxides: From Model Electrodes to Catalyst Systems. Chimia, 2014, 68, 217.	0.6	17
171	Fuel Electrode Carbon Corrosion in High Temperature Polymer Electrolyte Fuel Cellsâ€"Crucial or Irrelevant?. Energy Technology, 2016, 4, 65-74.	3.8	17
172	Wetting properties of porous high temperature polymer electrolyte fuel cells materials with phosphoric acid. Physical Chemistry Chemical Physics, 2019, 21, 13126-13134.	2.8	17
173	Synergistic effects in oxygen evolution activity of mixed iridium-ruthenium pyrochlores. Electrochimica Acta, 2021, 366, 137327.	5.2	17
174	Gas Diffusion Layers with Deterministic Structure for High Performance Polymer Electrolyte Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9908-9918.	8.0	17
175	Fe-Based O ₂ -Reduction Catalysts Synthesized Using Na ₂ CO ₃ as a Pore-Inducing Agent. ACS Applied Energy Materials, 2019, 2, 1469-1479.	5.1	16
176	Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries. Molecules, 2021, 26, 1679.	3.8	16
177	Surface Segregation Acts as Surface Engineering for the Oxygen Evolution Reaction on Perovskite Oxides in Alkaline Media. Chemistry of Materials, 2020, 32, 5256-5263.	6.7	16
178	Determination of the porosity and its heterogeneity of fuel cell microporous layers by X-ray tomographic microscopy. Journal of Power Sources, 2022, 539, 231612.	7.8	16
179	CO ₂ Electroreduction on Unsupported PdPt Aerogels: Effects of Alloying and Surface Composition on Product Selectivity. ACS Applied Energy Materials, 2022, 5, 8460-8471.	5.1	16
180	X-ray Scattering Studies of Irreversibly Adsorbed Bismuth on the Pt(111) Electrode Surface. Langmuir, 2001, 17, 5943-5946.	3.5	15

#	Article	IF	Citations
181	Tuning the Surface Electrochemistry by Strained Epitaxial Pt Thin Film Model Electrodes Prepared by Pulsed Laser Deposition. Advanced Materials Interfaces, 2016, 3, 1600222.	3.7	15
182	Grafting design: a strategy to increase the performance of radiationâ€grafted membranes. Polymer International, 2016, 65, 174-180.	3.1	15
183	Unsupported Ptâ€Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. Angewandte Chemie, 2017, 129, 10847-10850.	2.0	15
184	Tomographic Analysis and Modeling of Polymer Electrolyte Fuel Cell Unsupported Catalyst Layers. Journal of the Electrochemical Society, 2018, 165, F7-F16.	2.9	15
185	Understanding Degradation Effects of Elevated Temperature Operating Conditions in Polymer Electrolyte Water Electrolyzers. Journal of the Electrochemical Society, 2021, 168, 044515.	2.9	15
186	Insight into elevated temperature and thin membrane application for high efficiency in polymer electrolyte water electrolysis. Electrochimica Acta, 2021, 377, 138046.	5.2	15
187	<i>Operando</i> Liquid Pressure Determination in Polymer Electrolyte Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34003-34011.	8.0	15
188	Unraveling the Interaction Mechanism between Amidoxime Groups and Vanadium Ions at Various pH Conditions. Journal of Physical Chemistry C, 2017, 121, 6436-6445.	3.1	14
189	Spatially Resolved Analysis of Freezing during Isothermal PEFC Cold Starts with Time-of-Flight Neutron Imaging. Journal of the Electrochemical Society, 2020, 167, 064510.	2.9	14
190	On the Behavior of Pt(111)â^'Bi in Acid and Alkaline Electrolytes. Langmuir, 2001, 17, 7613-7619.	3.5	13
191	Electrocatalysis in Polymer Electrolyte Fuel Cells: From Fundamentals to Applications. ECS Transactions, 2012, 45, 3-14.	0.5	13
192	(Invited) Unraveling the Oxygen Reduction Reaction Mechanism and Activity of d-Band Perovskite Electrocatalysts for Low Temperature Alkaline Fuel Cells. ECS Transactions, 2014, 64, 1081-1093.	0.5	13
193	Effect of Cobalt Speciation and the Graphitization of the Carbon Matrix on the CO ₂ Electroreduction Activity of Co/N-Doped Carbon Materials. ACS Applied Materials & amp; Interfaces, 2021, 13, 15122-15131.	8.0	13
194	Elucidation of Fluid Streamlining in Multi-Layered Porous Transport Layers for Polymer Electrolyte Water Electrolyzers by Operando Neutron Radiography. Journal of the Electrochemical Society, 2021, 168, 014505.	2.9	13
195	Durable Oxide-Based Catalysts for Application as Cathode Materials in Polymer Electrolyte Fuel Cells (PEFCs). ECS Transactions, 2013, 50, 9-17.	0.5	12
196	An Online Gas Chromatography Cell Setup for Accurate CO ₂ -Electroreduction Product Quantification. Journal of the Electrochemical Society, 2021, 168, 064504.	2.9	12
197	Direct evidence of cobalt oxyhydroxide formation on a La _{0.2} Sr _{0.8} CoO ₃ perovskite water splitting catalyst. Journal of Materials Chemistry A, 2022, 10, 2434-2444.	10.3	12
198	High performance gas diffusion layers with added deterministic structures. Energy and Environmental Science, 2022, 15, 1293-1306.	30.8	12

#	Article	IF	Citations
199	Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-ray High-Resolution Tomography. ACS Omega, 2019, 4, 17236-17243.	3.5	11
200	CO ₂ -Assisted Regeneration of a Polymer Electrolyte Water Electrolyzer Contaminated with Metal Ion Impurities. Journal of the Electrochemical Society, 2019, 166, F610-F619.	2.9	11
201	Tuning the Co Oxidation State in Ba0.5Sr0.5Co0.8Fe0.2O3- \hat{l} by Flame Spray Synthesis Towards High Oxygen Evolution Reaction Activity. Catalysts, 2020, 10, 984.	3.5	11
202	Optimal Image Denoising for In Situ X-ray Tomographic Microscopy of Liquid Water in Gas Diffusion Layers of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2020, 167, 104505.	2.9	11
203	Improved Water Management for PEFC with Interdigitated Flow Fields using Modified Gas Diffusion Layers. Journal of the Electrochemical Society, 2020, 167, 054503.	2.9	11
204	Comparison of Pt-Doped Membranes for Gas Crossover Suppression in Polymer Electrolyte Water Electrolysis. Journal of the Electrochemical Society, 2021, 168, 104502.	2.9	11
205	Laser Structured Gas Diffusion Layers for Improved Water Transport and Fuel Cell Performance. ACS Applied Energy Materials, 2021, 4, 12808-12818.	5.1	11
206	Iridium-Titanium Oxide as Support for Pt Catalyst in PEFC Cathodes. ECS Transactions, 2013, 58, 1835-1841.	0.5	10
207	On the Positive Effect of CO during Start/Stop in High-Temperature Polymer Electrolyte Fuel Cells. ECS Electrochemistry Letters, 2014, 3, F47-F49.	1.9	10
208	Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers. Advanced Materials Interfaces, 2015, 2, 1500216.	3.7	10
209	Electrochemical Flow-Cell Setup for In Situ X-ray Investigations. Journal of the Electrochemical Society, 2016, 163, H913-H920.	2.9	10
210	Mask-assisted electron radiation grafting for localized through-volume modification of porous substrates: influence of electron energy on spatial resolution. Radiation Physics and Chemistry, 2017, 135, 133-141.	2.8	10
211	Membrane architecture with ion-conducting channels through swift heavy ion induced graft copolymerization. Journal of Materials Chemistry A, 2017, 5, 24826-24835.	10.3	10
212	Influence of operating conditions on permeation of CO2 through the membrane in an automotive PEMFC system. International Journal of Hydrogen Energy, 2019, 44, 12760-12771.	7.1	10
213	Impact of the Microporous Layer on Gas Diffusion Layers with Patterned Wettability I: Material Design and Characterization. Journal of the Electrochemical Society, 2020, 167, 064516.	2.9	10
214	Protagonists and spectators during photocatalytic solar water splitting with SrTaO _{<i>x</i>} N _{<i>y</i>} oxynitride. Journal of Materials Chemistry A, 2022, 10, 2374-2387.	10.3	10
215	⁵⁷ Fe-Enrichment effect on the composition and performance of Fe-based O ₂ -reduction electrocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 9147-9157.	2.8	10
216	Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review., 2001, 1, 105.		10

#	Article	IF	Citations
217	Physics-based OD-U-I-SoC cell performance model for aqueous organic redox flow batteries. Electrochimica Acta, 2022, 415, 140185.	5.2	10
218	Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N ₂ , and CO ₂ . Journal of Mass Spectrometry, 2018, 53, 1214-1221.	1.6	9
219	Possible Repair Mechanism for Hydrocarbon-Based Ionomers Following Damage by Radical Attack. Journal of the Electrochemical Society, 2021, 168, 054514.	2.9	9
220	Mass Transport Limitations of Water Evaporation in Polymer Electrolyte Fuel Cell Gas Diffusion Layers. Energies, 2021, 14, 2967.	3.1	9
221	Simulative Investigation on Local Hydrogen Starvation in PEMFCs: Influence of Water Transport and Humidity Conditions. Journal of the Electrochemical Society, 2021, 168, 074504.	2.9	9
222	A highly flexible electrochemical flow cell designed for the use of model electrode materials on non-conventional substrates. Review of Scientific Instruments, 2016, 87, 045115.	1.3	8
223	Fighting the Noise: Towards the Limits of Subsecond X-ray Tomographic Microscopy of PEFC. ECS Transactions, 2017, 80, 395-402.	0.5	8
224	Accelerated Stress Test Method for the Assessment of Membrane Lifetime in Vanadium Redox Flow Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47917-47928.	8.0	8
225	Imaging Phosphoric Acid Migration in High Temperature Polymer Electrolyte Fuel Cells by X-Ray Tomographic Microscopy. ECS Transactions, 2015, 69, 591-599.	0.5	7
226	Conductivity Limits of Extrinsically Doped SnO ₂ Supports. ECS Transactions, 2015, 69, 1167-1178.	0.5	7
227	Silicone Nanofilament-Supported Mixed Nickel-Metal Oxides for Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2017, 164, F203-F208.	2.9	7
228	Numerical Partitioning Model for the Kouteck $\tilde{A}^{1/2}$ -Levich Analysis of Electrochemical Flow Cells with a Combined Channel/Wall-Jet Geometry. Journal of the Electrochemical Society, 2017, 164, E3448-E3456.	2.9	7
229	State-of-the-art Nanofabrication in Catalysis. Chimia, 2017, 71, 160-169.	0.6	7
230	Does the thermal conductivity of gas diffusion layer matter in polymer electrolyte fuel cells?. Journal of Power Sources, 2022, 540, 231539.	7.8	7
231	Influence of Hydrophobic Coating of Gas Diffusion Layers on the Performance and Water Transport inside PEFC. ECS Transactions, 2014, 64, 467-475.	0.5	6
232	Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes. Radiation Physics and Chemistry, 2018, 144, 276-279.	2.8	6
233	Dynamic Neutron Imaging and Modeling of Cationic Impurities in Polymer Electrolyte Water Electrolyzer. Journal of the Electrochemical Society, 2020, 167, 144509.	2.9	6
234	A model based investigation of evaporative cooling for polymer electrolyte fuel cells – Stack level analysis. Journal of Power Sources, 2022, 517, 230706.	7.8	6

#	Article	IF	CITATIONS
235	The Effect of Relative Humidity on Chemical Degradation of Styrene Based Radiation Grafted Membranes in the PEFC. ECS Transactions, 2013, 58, 955-968.	0.5	5
236	Highly Active Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-Î} Single Material Electrode towards the Oxygen Evolution Reaction for Alkaline Water Splitting Applications. ECS Transactions, 2015, 69, 869-875.	0.5	5
237	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie, 2021, 133, 11813-11818.	2.0	5
238	Enlightening the journey of metal-organic framework (derived) catalysts during the oxygen evolution reaction in alkaline media via operando X-ray absorption spectroscopy. Current Opinion in Electrochemistry, 2021, 30, 100845.	4.8	5
239	Identifying Pitfalls in Lithium Metal Battery Characterization. Batteries and Supercaps, 2022, 5, .	4.7	5
240	Long-term energy efficiency and decarbonization trajectories for the Swiss pulp and paper industry. Sustainable Energy Technologies and Assessments, 2022, 52, 101937.	2.7	5
241	A new in-situ spectroelectrochemical setup for FTIR measurements in operating high temperature polymer electrolyte fuel cells. Electrochemistry Communications, 2013, 34, 200-203.	4.7	4
242	Polybenzimidazole Fuel Cell Technology. , 2013, , 391-431.		4
243	Decarbonisation of the Industrial Sector by means of Fuel Switching, Electrification and CCS. Computer Aided Chemical Engineering, 2018, , 1311-1316.	0.5	4
244	Polybenzimidazole Fuel Cell Technology: Theory, Performance, and Applications. , 2019, , 477-514.		4
245	Systematic Material Study Reveals TiNb ₂ O ₇ as a Model Wideâ€Bandgap Photoanode Material for Solar Water Splitting. Chemistry - A European Journal, 2020, 26, 7065-7073.	3.3	4
246	Asymmetric Butler–Volmer Kinetics of the Electrochemical Ce(III)/Ce(IV) Redox Couple on Polycrystalline Au Electrodes in Sulfuric Acid and the Dissociation Field Effect. ACS Catalysis, 2021, 11, 8140-8154.	11.2	4
247	Polybenzimidazole Fuel Cell Technology: Theory, Performance, and Applications. , 2018, , 1-38.		4
248	Operando Visualization of Water Distribution in Gas Diffusion Media of PEFCs with an Optimized Neutron Grating Interferometer. Journal of the Electrochemical Society, 2020, 167, 064509.	2.9	4
249	A model based investigation of evaporative cooling for polymer electrolyte fuel cells – System level analysis. Journal of Power Sources, 2022, 542, 231720.	7.8	4
250	Distinction of Liquid Water and Ice Based on Dual Spectrum Neutron Imaging. ECS Transactions, 2013, 58, 309-314.	0.5	3
251	Effects of Temperature and Catalyst Type on Chemical Degradation of Radiation Grafted Membranes in PEFCs. Fuel Cells, 2015, 15, 610-618.	2.4	3
252	Structure–property correlations of ion-containing polymers for fuel cell applications. Radiation Physics and Chemistry, 2016, 118, 120-123.	2.8	3

#	Article	IF	CITATIONS
253	Scaling the Graft Length and Graft Density of Irradiationâ€Grafted Copolymers. Macromolecular Chemistry and Physics, 2018, 219, 1800311.	2.2	3
254	Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo 2 O $5+\hat{l}$. Angewandte Chemie, 2021, 133, 14730-14740.	2.0	3
255	Catalysts and Catalyst-Layers in HT-PEMFCs. , 2016, , 297-313.		3
256	Finite Element Model Based Determination of Local Membrane Conductivity of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 0, , .	2.9	3
257	CV or not CV: Development of Electrode Diagnostics for High-Temperature Polymer Electrolyte Fuel Cells. ECS Transactions, 2013, 58, 819-830.	0.5	2
258	High-Temperature Polymer Electrolyte Fuel Cells. , 2014, , 996-1004.		2
259	Water Electrolysis: Hierarchically Structured Porous Transport Layers for Polymer Electrolyte Water Electrolysis (Adv. Energy Mater. 2/2020). Advanced Energy Materials, 2020, 10, 2070009.	19.5	2
260	Understanding the performance losses and "invasiveness―of in situ characterization steps during carbon corrosion experiments in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2022, 402, 139537.	5.2	2
261	An electrochemical method for high accuracy measurements of water transfer in fuel cells. Electrochemistry Communications, 2012, 22, 12-15.	4.7	1
262	From Electrochemical Interface to Interphase (2Dâ†'3D) on Ionomer Membranes. ChemElectroChem, 2015, 2, 338-342.	3.4	1
263	Frontispiece: Alloying Behavior of Self-Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, .	3.3	1
264	Time-of-Flight Neutron Imaging for the Distinction of Super-Cooled Water and Ice during PEFC Cold-Starts. ECS Meeting Abstracts, 2018, , .	0.0	1
265	Impact of the Microporous Layer on Gas Diffusion Layers with Patterned Wettability II: Operando Performance and Water Distribution Analysis by Neutron Imaging. Journal of the Electrochemical Society, 2020, 167, 064521.	2.9	1
266	X-Ray Absorption Spectroscopy Studies of Ir-Oxide Based Oxygen Evolution Catalysts Revisited. ECS Meeting Abstracts, 2021, MA2021-02, 1932-1932.	0.0	1
267	Low Temperature PEFC Performance of Unsupported Pt-Ni Aerogel Cathode Catalyst Layers. ECS Meeting Abstracts, 2021, MA2021-02, 1299-1299.	0.0	1
268	Effect of Low and Sub-Freezing Temperature on the PEFC Performance of Unsupported Pt-Ni Aerogel Cathode Catalyst Layers. ECS Meeting Abstracts, 2022, MA2022-01, 1461-1461.	0.0	1
269	Electrocatalyis for PEFCs: Oxygen Reduction on Nanoparticles and Extended Surfaces. Materials Research Society Symposia Proceedings, 2013, 1491, 46.	0.1	0
270	Enhanced Activity and Durability for the Oxygen Reduction Reaction On High Surface Area Multimetallic Aerogels. ECS Meeting Abstracts, 2013, , .	0.0	0

#	Article	IF	Citations
271	Electrochemical Investigation of Pt Model Electrodes for Application in Polymer Electrolyte Fuel Cells (PEFCs). ECS Meeting Abstracts, 2013, , .	0.0	0
272	Iridium-Titanium Oxide as Support for Pt Catalyst in PEFC Cathodes. ECS Meeting Abstracts, 2013, , .	0.0	0
273	Evaporative Cooling for Polymer Electrolyte Fuel Cells – a Model Based System Level Analysis. ECS Meeting Abstracts, 2021, MA2021-01, 68-68.	0.0	0
274	Platinum-Based Cathode Catalysts for Polymer Electrolyte Fuel Cells., 2014, , 1617-1626.		0
275	Platinum-Based Anode Catalysts for Polymer Electrolyte Fuel Cells. , 2014, , 1606-1617.		0
276	Electrochemical Surface Area Quantification, CO2 Reduction Performance and Stability Studies of Au and Au-Cu Aerogels. ECS Meeting Abstracts, 2021, MA2021-02, 830-830.	0.0	0
277	Agglomerate Size Effect on the PEMFC Performance of a Non-Noble Metal Oxygen Reduction Catalyst. ECS Meeting Abstracts, 2021, MA2021-02, 1142-1142.	0.0	0
278	Effects of Hydrophobic Coatings on Non-Isothermal Ice Crystallization in PEMFC GDMS. ECS Meeting Abstracts, 2021, MA2021-02, 1043-1043.	0.0	0
279	Noninvasive Measurement of Conductivity Distribution in Polymer Electrolyte Fuel Cells (PEFCs). ECS Meeting Abstracts, 2021, MA2021-02, 1072-1072.	0.0	0
280	Electrochemical CO2 Reduction to CO in Forward-Bias Bipolar Membrane Co-Electrolyzers. ECS Meeting Abstracts, 2021, MA2021-02, 818-818.	0.0	0
281	Capillary Pressure Evolution in Operating Polymer Electrolyte Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1027-1027.	0.0	0
282	A Combined Numerical and Experimental Study of Evaporative Cooling for Polymer Electrolyte Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1097-1097.	0.0	0
283	Microporous Layer 3D Porosity Distribution in Fuel Cell Gas Diffusion Layers. ECS Meeting Abstracts, 2021, MA2021-02, 1035-1035.	0.0	0
284	CO2 Electroreduction on Unsupported Pdpt Aerogels: Effects of Alloying and Surface Composition. ECS Meeting Abstracts, 2021, MA2021-02, 828-828.	0.0	0
285	Towards Thin Membrane Use in Polymer Electrolyte Water Electrolysis Using Pt Recombination Catalyst. ECS Meeting Abstracts, 2021, MA2021-02, 1133-1133.	0.0	0
286	Investigating Perovskite Oxide Catalysts As Bifunctional Oxygen Electrodes Using Operando XAS. ECS Meeting Abstracts, 2022, MA2022-01, 1377-1377.	0.0	0
287	The Influence of Non-Charged Sidechains on the Performance of Meta-Polybenzimidazole Membranes in Vanadium Redox Flow Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 2043-2043.	0.0	0
288	Electrochemical Surface Area Quantification, CO ₂ Reduction Performance and Stability Studies of Au and Au-Cu Aerogels. ECS Meeting Abstracts, 2022, MA2022-01, 2087-2087.	0.0	0

#	Article	IF	CITATIONS
289	Interplay between Surface-Adsorbed CO and Bulk Pd-Hydride at CO ₂ Electroreduction Conditions. ECS Meeting Abstracts, 2022, MA2022-01, 2095-2095.	0.0	0
290	Oxygen Evolution Reaction on Ir-Oxide Based Materials Studied By Modulation Excitation X-Ray Absorption Spectroscopy. ECS Meeting Abstracts, 2022, MA2022-01, 2075-2075.	0.0	0
291	Effect of Catalyst Aggregate Size on the Mass Transport Properties of Non-Noble Metal Catalyst Layers in PEMFC Cathodes. ECS Meeting Abstracts, 2022, MA2022-01, 1460-1460.	0.0	0