
Ying-Shao Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3178550/publications.pdf Version: 2024-02-01

VINC-SHAO HSU

#	Article	IF	CITATIONS
1	Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of Educational Technology, 2013, 44, E95.	6.3	106
2	Developing and validating technological pedagogical content knowledgeâ€practical (<scp>TPACK</scp> â€practical) through the <scp>D</scp> elphi survey technique. British Journal of Educational Technology, 2014, 45, 707-722.	6.3	95
3	A REVIEW OF EMPIRICAL EVIDENCE ON SCAFFOLDING FOR SCIENCE EDUCATION. International Journal of Science and Mathematics Education, 2012, 10, 437-455.	2.5	71
4	Impact of augmented reality lessons on students' STEM interest. Research and Practice in Technology Enhanced Learning, 2017, 12, 2.	3.2	59
5	The impacts of a web-aided instructional simulation on science learning. International Journal of Science Education, 2002, 24, 955-979.	1.9	56
6	An investigation of teachers' beliefs and their use of technology-based assessments. Computers in Human Behavior, 2014, 31, 198-210.	8.5	56
7	Toward a framework that connects individual TPACK and collective TPACK: A systematic review of TPACK studies investigating teacher collaborative discourse in the learning by design process. Computers and Education, 2021, 171, 104238.	8.3	56
8	Learning about seasons in a technologically enhanced environment: The impact of teacherâ€guided and studentâ€centered instructional approaches on the process of students' conceptual change. Science Education, 2008, 92, 320-344.	3.0	55
9	Science teachers' TPACK-Practical: Standard-setting using an evidence-based approach. Computers and Education, 2016, 95, 45-62.	8.3	52
10	Conceptualizing Socioscientific Decision Making from a Review of Research in Science Education. International Journal of Science and Mathematics Education, 2019, 17, 427-448.	2.5	47
11	Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices Within an E-Learning Environment. International Journal of Science Education, 2015, 37, 529-553.	1.9	44
12	Science Teachers' Proficiency Levels and Patterns of TPACK in a Practical Context. Journal of Science Education and Technology, 2015, 24, 78-90.	3.9	44
13	Investigating Coherence About Nature of Science in Science Curriculum Documents. Science and Education, 2019, 28, 291-310.	2.7	38
14	Students' development of socio-scientific reasoning in a mobile augmented reality learning environment. International Journal of Science Education, 2018, 40, 1410-1431.	1.9	36
15	A comparison study of augmented reality versus interactive simulation technology to support student learning of a socio-scientific issue. Interactive Learning Environments, 2016, 24, 1148-1161.	6.4	32
16	Investigating the effects of structured and guided inquiry on students' development of conceptual knowledge and inquiry abilities: a case study in Taiwan. International Journal of Science Education, 2016, 38, 1945-1971.	1.9	32
17	What makes an item more difficult? Effects of modality and type of visual information in a computer-based assessment of scientific inquiry abilities. Computers and Education, 2015, 85, 35-48.	8.3	31
18	Using mobile applications for learning: Effects of simulation design, visual-motor integration, and spatial ability on high school students' conceptual understanding. Computers in Human Behavior, 2017, 66, 103-113.	8.5	31

Ying-Shao Hsu

#	Article	IF	CITATIONS
19	Effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing. Instructional Science, 2013, 41, 555-573.	2.0	28
20	Development and Validation of a Multimedia-based Assessment of Scientific Inquiry Abilities. International Journal of Science Education, 2015, 37, 2326-2357.	1.9	28
21	Exploring the structure of TPACK with video-embedded and discipline-focused assessments. Computers and Education, 2017, 104, 49-64.	8.3	28
22	Fostering High School Students' Conceptual Understandings About Seasons: The Design of a Technology-enhanced Learning Environment. Research in Science Education, 2008, 38, 127-147.	2.3	27
23	Designing Applications for Physics Learning: Facilitating High School Students' Conceptual Understanding by Using Tablet PCS. Journal of Educational Computing Research, 2015, 51, 441-458.	5.5	27
24	Learning benefits of secondary school students' inquiryâ€related curiosity: A crossâ€grade comparison of the relationships among learning experiences, curiosity, engagement, and inquiry abilities. Science Education, 2018, 102, 917-950.	3.0	26
25	A Design Model of Distributed Scaffolding for Inquiry-Based Learning. Research in Science Education, 2015, 45, 241-273.	2.3	24
26	Supporting technology-enhanced inquiry through metacognitive and cognitive prompts: Sequential analysis of metacognitive actions in response to mixed prompts. Computers in Human Behavior, 2017, 72, 701-712.	8.5	21
27	The Role of Computer Simulation in an Inquiry-Based Learning Environment: Reconstructing Geological Events as Geologists. Journal of Science Education and Technology, 2012, 21, 370-383.	3.9	19
28	Prompting students to make socioscientific decisions: embedding metacognitive guidance in an e-learning environment. International Journal of Science Education, 2017, 39, 964-979.	1.9	18
29	CONTENT ANALYSIS OF 1998–2012 EMPIRICAL STUDIES IN SCIENCE READING USING A SELF-REGULATED LEARNING LENS. International Journal of Science and Mathematics Education, 2016, 14, 1-27.	2.5	17
30	Major Strands in Scientific Inquiry through Cluster Analysis of Research Abstracts. International Journal of Science Education, 2012, 34, 2811-2842.	1.9	13
31	PERCEIVED SOCIAL RELATIONSHIPS AND SCIENCE LEARNING OUTCOMES FOR TAIWANESE EIGHTH GRADERS: STRUCTURAL EQUATION MODELING WITH A COMPLEX SAMPLING CONSIDERATION. International Journal of Science and Mathematics Education, 2013, 11, 575-600.	2.5	13
32	Assessing Metacognitive Components in Self-Regulated Reading of Science Texts in E-Based Environments. International Journal of Science and Mathematics Education, 2018, 16, 797-816.	2.5	13
33	Factors Affecting Teachers' Adoption of Technology in Classrooms: Does School Size Matter?. International Journal of Science and Mathematics Education, 2007, 6, 63-85.	2.5	12
34	Establishing the Criterion-related, Construct, and Content Validities of a Simulation-based Assessment of Inquiry Abilities. International Journal of Science Education, 2014, 36, 1630-1650.	1.9	12
35	Features and trends of teaching strategies for scientific practices from a review of 2008–2017 articles. International Journal of Science Education, 2020, 42, 1183-1206.	1.9	12
36	'Lesson Rainbow': the use of multiple representations in an Internet-based, discipline-integrated science lesson. British Journal of Educational Technology, 2006, 37, 539-557.	6.3	11

Ying-Shao Hsu

#	Article	IF	CITATIONS
37	Data and Claim: The refinement of science fair work through argumentation. International Journal of Science Education, Part B: Communication and Public Engagement, 2011, 1, 147-164.	1.5	10
38	Investigating College and Graduate Students' Multivariable Reasoning in Computational Modeling. Science Education, 2013, 97, 337-366.	3.0	10
39	A Novice-Expert Study of Modeling Skills and Knowledge Structures about Air Quality. Journal of Science Education and Technology, 2012, 21, 588-606.	3.9	9
40	Effects of explicit and implicit prompts on students' inquiry practices in computer-supported learning environments in high school earth science. International Journal of Science Education, 2016, 38, 1699-1726.	1.9	9
41	Understanding science teachers' enactments of a computer-based inquiry curriculum. Computers and Education, 2017, 112, 69-82.	8.3	9
42	Using the Internet to Develop Students' Capacity for Scientific Inquiry. Journal of Educational Computing Research, 2004, 31, 137-161.	5.5	7
43	A Co-word Analysis of Selected Science Education Literature: Identifying Research Trends of Scaffolding in Two Decades (2000–2019). Frontiers in Psychology, 2022, 13, 844425.	2.1	7
44	The TPACK-P Framework for Science Teachers in a Practical Teaching Context. , 2015, , 17-32.		6
45	Implementers, designers, and disseminators of integrated STEM activities: self-efficacy and commitment. Research in Science and Technological Education, 0, , 1-19.	2.5	6
46	The Impact of a Mobile Augmented Reality Game: Changing Students' Perceptions of the Complexity of Socioscientific Reasoning. , 2016, , .		5
47	The interplay of students' regulation learning and their collective decision-making performance in a SSI context. International Journal of Science Education, 2021, 43, 1746-1778.	1.9	5
48	Epilogue for the IJSME Special Issue: Metacognition for Science and Mathematics Learning in Technology-Infused Learning Environments. International Journal of Science and Mathematics Education, 2016, 14, 335-344.	2.5	3
49	Developing Technology-Infused Inquiry Learning Modules to Promote Science Learning in Taiwan. , 2015, , 373-403.		3
50	Whole Class Dialogic Discussion Meets Taiwan's Physics Teachers: Attitudes and Culture. Journal of Science Education and Technology, 2014, 23, 183-197.	3.9	1
51	Supporting scientific modeling practices in atmospheric sciences: intended and actual affordances of a computer-based modeling tool. Interactive Learning Environments, 2015, 23, 748-765.	6.4	1
52	The collaborative discourse characteristics of high school students during a web-based module for a socioscientific issue. Instructional Science, 0, , .	2.0	1
53	What Makes Teacher Students Become Official Teachers A Preliminary Exploration of Critical Predictors Based on Data Mining Techniques. , 2016, , .		0