Huihong Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3178315/publications.pdf

Version: 2024-02-01

304743 330143 1,446 38 22 37 h-index citations g-index papers 38 38 38 1733 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse. ACS Nano, 2017, 11, 4225-4236.	14.6	277
2	Site Occupancy and Nearâ€Infrared Luminescence in Ca ₃ Ga ₂ Ge ₃ O ₁₂ : Cr ³⁺ Persistent Phosphor. Advanced Optical Materials, 2017, 5, 1700227. ="http://www.w3.org/1998/Math/MathML"	7.3	131
3	display="inline"> <mmi:msup><mmi:mi mathvariant="normal">Ce<mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Ba<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi< td=""><td><td>p></td></td></mml:mi<></mml:mrow></mmi:mi </mmi:msup>	<td>p></td>	p>

#	Article	IF	Citations
19	Luminescence, energy transfer and temperature sensing property of Ce3+, Dy3+ doped LiY9(SiO4)6O2 phosphors. Journal of Luminescence, 2019, 213, 184-190.	3.1	33
20	Bright red, orange-yellow and white switching photoluminescence from silicon oxynitride films with fast decay dynamics. Optical Materials Express, 2014, 4, 205.	3.0	24
21	Vacuum-ultraviolet–vis luminescence of dibarium magnesium orthoborate Ba2Mg(BO3)2 doped with Ce3+ and Eu2+ ions. Journal of Materials Research, 2006, 21, 864-869.	2.6	23
22	Near-infrared-to-near-infrared down-shifting and upconversion luminescence of KY3F10 with single dopant of Nd3+ ion. Applied Physics Letters, 2016, 108, .	3.3	23
23	Photoluminescence and radioluminescence of pure and Ce3+ activated Na3Gd(PO4)2. Optical Materials, 2011, 33, 618-622.	3.6	21
24	Single-band near-infrared quantum cutting of Ho3+-Yb3+ codoped KLu2F7 phosphors by energy clustering. Journal of Alloys and Compounds, 2017, 695, 1154-1159.	5.5	20
25	Positive effect of codoping Yb3+ on the super-long persistent luminescence of Cr3+-doped zinc aluminum germanate. Ceramics International, 2018, 44, 17377-17382.	4.8	19
26	The luminescence of Eu3+ activated Ba2Mg(BO3)2 phosphors. Applied Physics A: Materials Science and Processing, 2011, 105, 143-147.	2.3	16
27	The VUVâ€VIS Spectroscopic Properties of Dy3+Ion in Phosphors M5â€2XDyXNaX(PO4)3F (M=Ca, Sr, Ba) and Their Potential Applications in Mercuryâ€Free Lamps. Spectroscopy Letters, 2007, 40, 317-331.	1.0	12
28	Energy Transfer Dynamics and Quantum Yield Derivation of the Tm ³⁺ Concentration-Dependent, Three-Photon Near-Infrared Quantum Cutting in La ₂ BaZnO ₅ . Journal of Physical Chemistry C, 2015, 119, 26643-26651.	3.1	12
29	A comparison of Ce3+ luminescence in X2Z(BO3)2 (X=Ba, Sr; Z=Ca, Mg) with relevant composition and structure. Journal of Rare Earths, 2012, 30, 1-5.	4.8	11
30	Upconversion Red Emission and Near-Infrared Quantum-Cutting Persistent Luminescence of Nd ³⁺ -Activated Ca ₂ SnO ₄ Induced by Yb ³⁺ . Journal of Physical Chemistry C, 2020, 124, 19774-19780.	3.1	8
31	Discovery of near-infrared persistent phosphorescence and Stokes luminescence in Cr3+ and Nd3+ doped GdY2Al3Ga2O12 dual mode phosphors. Journal of Luminescence, 2020, 221, 117053.	3.1	8
32	A Mn4+ activated (Gd,La)2(Zn,Mg)TiO6 deep-red emission phosphor: The luminescence properties and potential application for full-spectrum pc-LEDs. Journal of Luminescence, 2022, 247, 118895.	3.1	7
33	The VUV–vis luminescent properties of Ln3+ (Ln=Ce, Pr, Tb) in Sr0.96Na0.02Ln0.02B4O7. Journal of Alloys and Compounds, 2006, 425, 307-313.	5.5	5
34	Tuning of near-infrared-to-near-infrared luminescence from one-photon to two-photon anti-Stokes shift in Ca_3Ga_2xCr_xGe_3O_12 via varying Cr^3+ content. Optics Letters, 2017, 42, 715.	3.3	5
35	Exciton Emissions in Bilayer WSe ₂ Tuned by the Ferroelectric Polymer. Journal of Physical Chemistry Letters, 2022, 13, 1636-1643.	4.6	3
36	The luminescence spectra and energy transfer from Ce3+/Tb3+ to Yb3+ in Ca3(BO3)2. Optik, 2017, 130, 332-337.	2.9	2

Huihong Lin

#	Article	IF	CITATIONS
37	Energy transfer and downconversion near-infrared material of Tb 3+ and Yb 3+ doped Ca 5 (BO 3) 3 F. Physica B: Condensed Matter, 2016, 500, 44-47.	2.7	1
38	High-Temperature-Induced Intervalley Carrier Transfer in Two-Dimensional Semiconductors: WSe2 versus WS2. Journal of Physical Chemistry C, 2021, 125, 23922-23928.	3.1	0