
## Wenbin Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3178299/publications.pdf Version: 2024-02-01



WENRIN ZHONC

| #  | Article                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 2-Methylimidazole assisted synthesis of nanocrystalline shell reinforced PPy hydrogel with high mechanical and electrochemical performance. Chemical Engineering Journal, 2022, 430, 133033.                                                                                                               | 12.7 | 17        |
| 2  | Mechanically Robust and Elastic Graphene/Aramid Nanofiber/Polyaniline Nanotube Aerogels for<br>Pressure Sensors. ACS Applied Materials & Interfaces, 2022, 14, 17858-17868.                                                                                                                                | 8.0  | 20        |
| 3  | Facile Preparation of a 3D Porous Aligned Graphene-Based Wall Network Architecture by Confined<br>Self-Assembly with Shape Memory for Artificial Muscle, Pressure Sensor, and Flexible Supercapacitor.<br>ACS Applied Materials & Interfaces, 2022, 14, 17739-17753.                                       | 8.0  | 23        |
| 4  | Mechanically stiff and high-areal-performance integrated all-in-wood supercapacitors with electroactive biomass-based hydrogel. Cellulose, 2021, 28, 389-404.                                                                                                                                              | 4.9  | 17        |
| 5  | Bioinspired strengthening and toughening of carbon nanotube@polyaniline/graphene film using<br>electroactive biomass as glue for flexible supercapacitors with high rate performance and volumetric<br>capacitance, and low-temperature tolerance. Journal of Materials Chemistry A, 2021, 9, 18356-18368. | 10.3 | 31        |
| 6  | Controllable preparation of nitrogen-doped hierarchical and honeycomb-like porous<br>carbon/graphene based on composites of graphene oxide and polyaniline nanorod arrays for high<br>performance supercapacitors. Journal of Energy Storage, 2021, 36, 102314.                                            | 8.1  | 13        |
| 7  | Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications.<br>Chemical Engineering Journal, 2021, 409, 127891.                                                                                                                                                       | 12.7 | 62        |
| 8  | Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors. Nanoscale, 2021, 13, 3079-3091.                                                                              | 5.6  | 24        |
| 9  | Mechanically strong multifunctional three-dimensional crosslinked aramid nanofiber/reduced holey graphene oxide and aramid nanofiber/reduced holey graphene oxide/polyaniline hydrogels and derived films. Nanoscale, 2021, 13, 16734-16747.                                                               | 5.6  | 15        |
| 10 | Biomass Peach Gum-Derived Heteroatom-Doped Porous Carbon via In Situ Molten Salt Activation for<br>High-Performance Supercapacitors. Energy & Fuels, 2021, 35, 19801-19810.                                                                                                                                | 5.1  | 15        |
| 11 | Facile synthesis of high nitrogen-doped content, mesopore-dominated biomass-derived hierarchical porous graphitic carbon for high performance supercapacitors. Electrochimica Acta, 2020, 334, 135615.                                                                                                     | 5.2  | 46        |
| 12 | Arbitrary deformable and high-strength electroactive polymer/MXene anti-exfoliative composite films<br>assembled into high performance, flexible all-solid-state supercapacitors. Nanoscale, 2020, 12,<br>20797-20810.                                                                                     | 5.6  | 29        |
| 13 | Facile Preparation of an Excellent Mechanical Property Electroactive Biopolymer-Based Conductive<br>Composite Film and Self-Enhancing Cellulose Hydrogel to Construct a High-Performance Wearable<br>Supercapacitor. ACS Sustainable Chemistry and Engineering, 2020, 8, 7879-7891.                        | 6.7  | 36        |
| 14 | Strategy for Constructing Nitrogen-Doped Graphene Structure by Patching Reduced Graphene Oxide<br>under Low Temperature and Its Application in Supercapacitors. Industrial & Engineering Chemistry<br>Research, 2020, 59, 7475-7484.                                                                       | 3.7  | 10        |
| 15 | Synthesis and Enhancement of Electroactive Biomass/Polypyrrole Hydrogels for High Performance<br>Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1901393.                                                                                                              | 3.7  | 41        |
| 16 | Nitrogen-enriched compact biochar-based electrode materials for supercapacitors with ultrahigh volumetric performance. Journal of Power Sources, 2019, 439, 227067.                                                                                                                                        | 7.8  | 47        |
| 17 | Bimetallic-organic coordination polymers to prepare N-doped hierarchical porous carbon for high performance supercapacitors. Progress in Natural Science: Materials International, 2019, 29, 495-503.                                                                                                      | 4.4  | 15        |
| 18 | Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors. Nanoscale, 2019, 11, 7304-7316.                                                                                                                                                            | 5.6  | 24        |

WENBIN ZHONG

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Biligand metal-organic coordination polymer to prepare high N-doped content and structure<br>controllable porous carbon with high-electrochemical performance. Electrochimica Acta, 2019, 308,<br>263-276.                                                                             | 5.2  | 8         |
| 20 | A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to<br>support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high<br>areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830. | 10.3 | 130       |
| 21 | Heteroatom-Doped Sheet-Like and Hierarchical Porous Carbon Based on Natural Biomass Small<br>Molecule Peach Gum for High-Performance Supercapacitors. ACS Sustainable Chemistry and<br>Engineering, 2019, 7, 3389-3403.                                                                | 6.7  | 126       |
| 22 | Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline<br>hydrogels for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2018, 6,<br>9245-9256.                                                               | 10.3 | 156       |
| 23 | Mechanically robust double-crosslinked network functionalized graphene/polyaniline stiff hydrogels<br>for superior performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8568-8578.                                                                                  | 10.3 | 74        |
| 24 | Synthesis and Morphology Evolution of Ultrahigh Content Nitrogenâ€Đoped, Microporeâ€Đominated<br>Carbon Materials as Highâ€Performance Supercapacitors. ChemSusChem, 2018, 11, 3932-3940.                                                                                              | 6.8  | 36        |
| 25 | Metal-organic coordination polymer/multi-walled carbon nanotubes composites to prepare N-doped<br>hierarchical porous carbon for high performance supercapacitors. Electrochimica Acta, 2018, 284,<br>69-79.                                                                           | 5.2  | 23        |
| 26 | Nacre-like laminate nitrogen-doped porous carbon/carbon nanotubes/graphene composite for excellent comprehensive performance supercapacitors. Nanoscale, 2018, 10, 15229-15237.                                                                                                        | 5.6  | 19        |
| 27 | High-Performance Biomass-Based Flexible Solid-State Supercapacitor Constructed of<br>Pressure-Sensitive Lignin-Based and Cellulose Hydrogels. ACS Applied Materials & Interfaces, 2018,<br>10, 22190-22200.                                                                            | 8.0  | 141       |
| 28 | Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors. Electrochimica Acta, 2018, 282, 642-652.                                                                                                | 5.2  | 72        |
| 29 | Metal–Organic Coordination Polymer to Prepare Density Controllable and High Nitrogen-Doped<br>Content Carbon/Graphene for High Performance Supercapacitors. ACS Applied Materials &<br>Interfaces, 2017, 9, 317-326.                                                                   | 8.0  | 29        |
| 30 | Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes. Electrochimica Acta, 2016, 211, 941-949.                                                                                                                                          | 5.2  | 42        |
| 31 | Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. Journal of Power Sources, 2016, 319, 73-81.                                                                                          | 7.8  | 177       |
| 32 | Structure of functionalized nitrogen-doped graphene hydrogels derived from isomers of phenylenediamine and graphene oxide based on their high electrochemical performance. Electrochimica Acta, 2016, 212, 828-838.                                                                    | 5.2  | 38        |
| 33 | Ultrahigh specific surface area porous carbon nanospheres and its composite with polyaniline: preparation and application for supercapacitors. RSC Advances, 2016, 6, 25519-25524.                                                                                                     | 3.6  | 27        |
| 34 | High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8859.                                                                                                                                                | 10.3 | 95        |
| 35 | Superhydrophobic polyaniline hollow bars: Constructed with nanorod-arrays based on self-removing metal-monomeric template. Journal of Colloid and Interface Science, 2012, 365, 28-32.                                                                                                 | 9.4  | 23        |
| 36 | Facile route to hierarchical conducting polymer nanostructure: Synthesis of layered polypyrrole network plates. Journal of Applied Polymer Science, 2009, 114, 3855-3862.                                                                                                              | 2.6  | 12        |

WENBIN ZHONG

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Scalable Route to Highly Functionalized Multiâ€Walled Carbon Nanotubes on a Large Scale.<br>Macromolecular Chemistry and Physics, 2008, 209, 846-853.                                | 2.2 | 25        |
| 38 | Functionalized Multi-Walled Carbon Nanotubes Prepared by In Situ Polycondensation of Polyurethane. Macromolecular Chemistry and Physics, 2007, 208, 964-972.                           | 2.2 | 45        |
| 39 | Synthesis of Highly Hydrophilic Polyaniline Nanowires and Sub-Micro/Nanostructured Dendrites on Poly(propylene) Film Surfaces. Macromolecular Rapid Communications, 2006, 27, 563-569. | 3.9 | 35        |