
Dipak Ashok Jadhav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3178248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater. Renewable and Sustainable Energy Reviews, 2017, 76, 1022-1031.	8.2	137
2	Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells. Bioresource Technology, 2014, 154, 330-335.	4.8	88
3	Suppressing methanogens and enriching electrogens in bioelectrochemical systems. Bioresource Technology, 2019, 277, 148-156.	4.8	88
4	Modeling and optimization strategies towards performance enhancement of microbial fuel cells. Bioresource Technology, 2021, 320, 124256.	4.8	88
5	Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. Journal of Water Process Engineering, 2020, 38, 101566.	2.6	85
6	Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum. Bioresource Technology, 2015, 180, 66-71.	4.8	83
7	Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation, 2021, 7, 169.	1.4	72
8	Simultaneous organic matter removal and disinfection of wastewater with enhanced power generation in microbial fuel cell. Bioresource Technology, 2014, 163, 328-334.	4.8	63
9	Architectural adaptations of microbial fuel cells. Applied Microbiology and Biotechnology, 2018, 102, 9419-9432.	1.7	57
10	Wastewater treatment in pilotâ€scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications. Environmental Progress and Sustainable Energy, 2016, 35, 1809-1817.	1.3	56
11	Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Bioresource Technology, 2015, 182, 225-231.	4.8	55
12	Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells. Applied Biochemistry and Biotechnology, 2017, 183, 1076-1092.	1.4	54
13	Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. Sustainability, 2021, 13, 8796.	1.6	53
14	Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst. Bioresource Technology, 2015, 191, 110-116.	4.8	51
15	Addressing scale-up challenges and enhancement in performance of hydrogen-producing microbial electrolysis cell through electrode modifications. Energy Reports, 2022, 8, 2726-2746.	2.5	49
16	Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts. Bioresource Technology, 2017, 238, 568-574.	4.8	48
17	A Comprehensive Understanding of Electro-Fermentation. Fermentation, 2020, 6, 92.	1.4	48
18	Scalability of microbial electrochemical technologies: Applications and challenges. Bioresource Technology, 2022, 345, 126498.	4.8	46

Dipak Ashok Jadhav

#	Article	IF	CITATIONS
19	Cow's urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell. Energy, 2016, 113, 76-84.	4.5	42
20	Effective ammonium removal by anaerobic oxidation in microbial fuel cells. Environmental Technology (United Kingdom), 2015, 36, 767-775.	1.2	41
21	Effective power management system in stacked microbial fuel cells for onsite applications. Journal of Power Sources, 2022, 517, 230684.	4.0	41
22	Recent advancement in scaling-up applications of microbial fuel cells: From reality to practicability. Sustainable Energy Technologies and Assessments, 2021, 45, 101226.	1.7	40
23	Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. Chemosphere, 2021, 282, 130881.	4.2	38
24	Blending of microbial inocula: An effective strategy for performance enhancement of clayware Biophotovoltaics microbial fuel cells. Bioresource Technology, 2021, 323, 124564.	4.8	37
25	Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation, 2021, 7, 291.	1.4	35
26	Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. International Journal of Environmental Technology and Management, 2020, 23, 50.	0.1	31
27	Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. International Journal of Environmental Technology and Management, 2020, 23, 50.	0.1	23
28	Microbial Fuel Cell United with Other Existing Technologies for Enhanced Power Generation and Efficient Wastewater Treatment. Applied Sciences (Switzerland), 2021, 11, 10777.	1.3	18
29	Fungal-mediated electrochemical system: Prospects, applications and challenges. Current Research in Microbial Sciences, 2021, 2, 100041.	1.4	12
30	Effectiveness of biophotovoltaics system modified with fuller-clay composite separators for chromium removal. Electrochimica Acta, 2022, 426, 140714.	2.6	12
31	Effect of membrane biofouling on the performance of microbial electrochemical cells and mitigation strategies. Bioresource Technology Reports, 2021, 15, 100822.	1.5	11
32	Impact of cathode biofouling in microbial fuel cells and mitigation techniques. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102408.	1.5	10
33	Microbial Carbon Capture Cell: Advanced Bio-electrochemical System for Wastewater Treatment, Electricity Generation and Algal Biomass Production. , 2019, , 317-338.		9
34	Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation. Environmental Science and Pollution Research, 2022, 29, 51117-51129.	2.7	9
35	Microbial Electrochemical Heavy Metal Removal: Fundamental to the Recent Development. , 2021, , 521-542.		8

Recent Progress Towards Scaling Up of MFCs. , 2018, , 443-457.

Dipak Ashok Jadhav

#	Article	IF	CITATIONS
37	Advanced microbial fuel cell for biosensor applications to detect quality parameters of pollutants. , 2021, , 125-139.		6
38	Enhancement in Cathodic Redox Reactions of Single-Chambered Microbial Fuel Cells with Castor Oil-Emitted Powder as Cathode Material. Materials, 2021, 14, 4454.	1.3	6
39	Contaminant Removal and Energy Recovery in Microbial Fuel Cells. , 2019, , 76-94.		5
40	Bioelectrochemical systems for removal and recovery of heavy metals. , 2021, , 185-203.		3
41	Microbial electrosynthesis: Carbon dioxide sequestration via bioelectrochemical system. , 2021, , 113-132.		2
42	Electrochemical Losses and Its Role in Power Generation of Microbial Fuel Cells. , 2020, , 81-118.		2
43	Potential of microbial fuel cells for wastewater treatment. , 2021, , 115-124.		1
44	Application Niche of Microbial Fuel Cell as a Bio-energy Source for Sustainable Development. , 2020, , 21-42.		1
45	Utilization of human waste and animal urine for energy and resource recovery in microbial electrochemical system. , 2022, , 419-435.		1
46	E-waste derived material for microbial electrolysis cell: A perspective on synchronized waste management and energy recovery. , 2021, , 141-151.		0
47	Utilization and Management of Waste Derived Material for Sustainable Energy Production: A mini review. , 0, , .		0