
## Sam Bryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317787/publications.pdf Version: 2024-02-01



SAM ROVAN

| #  | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions <i>via</i> Raman, visible, and near-infrared spectroscopy. Radiochimica Acta, 2011, 99, 563-572.                                                                                   | 1.2  | 72        |
| 2  | Electrochemical and optical evaluation of noble metal– and carbon–ITO hybrid optically transparent electrodes. Journal of Electroanalytical Chemistry, 2004, 565, 311-320.                                                                                                                    | 3.8  | 53        |
| 3  | Spectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single<br>Device. 11. Design and Evaluation of a Small Portable Sensor for the Determination of Ferrocyanide in<br>Hanford Waste Samples. Environmental Science & Technology, 2003, 37, 123-130. | 10.0 | 50        |
| 4  | Multivariate Analysis for Quantification of Plutonium(IV) in Nitric Acid Based on Absorption Spectra.<br>Analytical Chemistry, 2017, 89, 9354-9359.                                                                                                                                           | 6.5  | 41        |
| 5  | Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis.<br>Analytical Chemistry, 2013, 85, 4120-4128.                                                                                                                                                      | 6.5  | 39        |
| 6  | Highly Selective Colorimetric and Luminescence Response of a Square-Planar Platinum(II) Terpyridyl<br>Complex to Aqueous TcO <sub>4</sub> <sup>–</sup> . Inorganic Chemistry, 2015, 54, 9914-9923.                                                                                            | 4.0  | 39        |
| 7  | Mechanisms of neptunium redox reactions in nitric acid solutions. Inorganic Chemistry Frontiers, 2017, 4, 581-594.                                                                                                                                                                            | 6.0  | 39        |
| 8  | Absorption spectroscopy for the quantitative prediction of lanthanide concentrations in the 3LiCl–2CsCl eutectic at 723 K. Analytical Methods, 2016, 8, 7731-7738.                                                                                                                            | 2.7  | 38        |
| 9  | Semi-Infinite Linear Diffusion Spectroelectrochemistry on an Aqueous <i>Micro</i> -Drop. Analytical<br>Chemistry, 2011, 83, 4214-4219.                                                                                                                                                        | 6.5  | 36        |
| 10 | Multivariate Analysis To Quantify Species in the Presence of Direct Interferents: Micro-Raman Analysis<br>of HNO <sub>3</sub> in Microfluidic Devices. Analytical Chemistry, 2018, 90, 2548-2554.                                                                                             | 6.5  | 36        |
| 11 | Highly Oxidizing Excited States of Re and Tc Complexes. Journal of the American Chemical Society, 2006, 128, 16494-16495.                                                                                                                                                                     | 13.7 | 35        |
| 12 | Micro-Raman Technology to Interrogate Two-Phase Extraction on a Microfluidic Device. Analytical<br>Chemistry, 2018, 90, 8345-8353.                                                                                                                                                            | 6.5  | 34        |
| 13 | Luminescence-Based Spectroelectrochemical Sensor for [Tc(dmpe) <sub>3</sub> ] <sup>2+/+</sup><br>(dmpe = 1,2- <i>bis</i> (dimethylphosphino)ethane) within a Charge-Selective Polymer Film. Analytical<br>Chemistry, 2011, 83, 1766-1772.                                                     | 6.5  | 33        |
| 14 | Electrochemistry and Spectroelectrochemistry of Europium(III) Chloride in 3LiCl–2KCl from 643 to<br>1123 K. Analytical Chemistry, 2013, 85, 9924-9931.                                                                                                                                        | 6.5  | 33        |
| 15 | Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid<br>Schemes. Analytical Chemistry, 2015, 87, 5139-5147.                                                                                                                                      | 6.5  | 31        |
| 16 | Online Monitoring of Solutions Within Microfluidic Chips: Simultaneous Raman and UV–Vis<br>Absorption Spectroscopies. ACS Sensors, 2019, 4, 2288-2295.                                                                                                                                        | 7.8  | 30        |
| 17 | Spectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single<br>Device Electroanalysis, 2002, 14, 1345-1352.                                                                                                                                           | 2.9  | 28        |
| 18 | Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing. Analytical<br>Chemistry, 2017, 89, 7324-7332.                                                                                                                                                              | 6.5  | 28        |

SAM BRYAN

| #  | Article                                                                                                                                                                                                                                                                   | IF          | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 19 | Thin‣ayer Spectroelectrochemistry on an Aqueous Microdrop. Electroanalysis, 2012, 24, 1065-1070.                                                                                                                                                                          | 2.9         | 26        |
| 20 | Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl<br>Phosphate Degradation Product in Tributyl Phosphate/ <i>n</i> -Dodecane/Nitric Acid Solvent.<br>Industrial & Engineering Chemistry Research, 2013, 52, 17607-17617. | 3.7         | 26        |
| 21 | Sensor Fusion: Comprehensive Real-Time, On-Line Monitoring for Process Control via Visible,<br>Near-Infrared, and Raman Spectroscopy. ACS Sensors, 2020, 5, 2467-2475.                                                                                                    | 7.8         | 23        |
| 22 | Luminescence from thetrans-Dioxotechnetium(V) Chromophore. Journal of the American Chemical<br>Society, 2005, 127, 14978-14979.                                                                                                                                           | 13.7        | 22        |
| 23 | Development and testing of a novel micro-Raman probe and application of calibration method for the quantitative analysis of microfluidic nitric acid streams. Analyst, The, 2018, 143, 1188-1196.                                                                         | 3.5         | 22        |
| 24 | Reimagining pH Measurement: Utilizing Raman Spectroscopy for Enhanced Accuracy in Phosphoric Acid<br>Systems. Analytical Chemistry, 2020, 92, 5882-5889.                                                                                                                  | 6.5         | 20        |
| 25 | Electronic and Molecular Structures oftrans-Dioxotechnetium(V) Polypyridyl Complexes in the Solid<br>State. Inorganic Chemistry, 2011, 50, 5815-5823.                                                                                                                     | 4.0         | 19        |
| 26 | Spectroscopic on-line monitoring for process control and safeguarding of radiochemical streams in nuclear fuel reprocessing facilities. , 2011, , 95-119.                                                                                                                 |             | 16        |
| 27 | Spectroelectrochemistry of EuCl <sub>3</sub> in Four Molten Salt Eutectics; 3â€LiClâ^'NaCl, 3â€LiClâ^'2â€<br>LiClâ^'RbCl, and 3â€LiClâ^'2â€CsCl; at 873â€K. Electroanalysis, 2016, 28, 2158-2165.                                                                         | KÇl,<br>2:9 | 16        |
| 28 | Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes. Electroanalysis, 2016, 28, 2109-2117.                                                                                                                                                     | 2.9         | 16        |
| 29 | Photophysics and Luminescence Spectroelectrochemistry of [Tc(dmpe) <sub>3</sub> ] <sup>+/2+</sup><br>(dmpe = 1,2- <i>bis</i> (dimethylphosphino)ethane). Journal of Physical Chemistry A, 2013, 117, 12749-12758.                                                         | 2.5         | 15        |
| 30 | On-Line Monitoring of Gas-Phase Molecular Iodine Using Raman and Fluorescence Spectroscopy Paired with Chemometric Analysis. Environmental Science & Technology, 2021, 55, 3898-3908.                                                                                     | 10.0        | 15        |
| 31 | Absorbanceâ€Based Spectroelectrochemical Sensor for [Re(dmpe) <sub>3</sub> ] <sup>+</sup><br>(dmpe=dimethylphosphinoethane). Electroanalysis, 2009, 21, 2091-2098.                                                                                                        | 2.9         | 13        |
| 32 | Three-component spectroelectrochemical sensor module for the detection of pertechnetate (TcO4-).<br>Reviews in Analytical Chemistry, 2013, 32, .                                                                                                                          | 3.2         | 13        |
| 33 | Combinations of NIR, Raman spectroscopy and physicochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models. Analytica Chimica Acta, 2018, 1006, 10-21.                                              | 5.4         | 13        |
| 34 | Overcoming Oxidation State-Dependent Spectral Interferences: Online Monitoring of U(VI) Reduction<br>to U(IV) via Raman and UV–vis Spectroscopy. Industrial & Engineering Chemistry Research, 2020, 59,<br>8894-8901.                                                     | 3.7         | 13        |
| 35 | Raman Spectroscopy Coupled with Chemometric Analysis for Speciation and Quantitative Analysis of Aqueous Phosphoric Acid Systems. Analytical Chemistry, 2021, 93, 5890-5896.                                                                                              | 6.5         | 12        |
| 36 | Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring. Environmental Science & Technology, 2012, 46, 6190-6197.                                                                                        | 10.0        | 10        |

Sam Bryan

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Assessing a Spectroelectrochemical Sensor's Performance for Detecting [Ru(bpy)3]2+ in Natural and<br>Treated Water. Electroanalysis, 2012, 24, 1517-1523.                                                                      | 2.9  | 10        |
| 38 | Electrochemistry and Spectroelectrochemistry of the Pu (III/IV) and (IV/VI) Couples in Nitric Acid<br>Systems. Electroanalysis, 2017, 29, 2744-2751.                                                                           | 2.9  | 10        |
| 39 | Electrochemistry of Europium(III) Chloride in 3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl, and 3 LiCl – 2<br>CsCl Eutectics at Various Temperatures. Journal of the Electrochemical Society, 2017, 164, H5345-H5352.            | 2.9  | 10        |
| 40 | In-situ monitoring of seeded and unseeded stage III corrosion using Raman spectroscopy. Npj Materials<br>Degradation, 2019, 3, .                                                                                               | 5.8  | 10        |
| 41 | MicroRaman Measurements for Nuclear Fuel Reprocessing Applications. Procedia Chemistry, 2016, 21, 466-472.                                                                                                                     | 0.7  | 9         |
| 42 | Novel Spectroelectrochemical Sensor for Ferrocyanide in Hanford Waste Simulant. ACS Symposium Series, 2000, , 364-378.                                                                                                         | 0.5  | 8         |
| 43 | Method for the in situ Measurement of pH and Alteration Extent for Aluminoborosilicate Glasses<br>Using Raman Spectroscopy. Analytical Chemistry, 2018, 90, 11812-11819.                                                       | 6.5  | 8         |
| 44 | In Situ Monitoring and Kinetic Analysis of the Extraction of Nitric Acid by Tributyl Phosphate in<br>N-Dodecane Using Raman Spectroscopy. Solvent Extraction and Ion Exchange, 2019, 37, 157-172.                              | 2.0  | 8         |
| 45 | Optical Spectroscopy and Multivariate Analysis for Biodosimetry and Monitoring of Radiation Injury<br>to the Skin. Drug Development Research, 2012, 73, 252-273.                                                               | 2.9  | 7         |
| 46 | Mechanisms of Plutonium Redox Reactions in Nitric Acid Solutions. Inorganic Chemistry, 2020, 59, 6826-6838.                                                                                                                    | 4.0  | 7         |
| 47 | Quantification of Raman-Interfering Polyoxoanions for Process Analysis: Comparison of Different<br>Chemometric Models and a Demonstration on Real Hanford Waste. Environmental Science &<br>Technology, 2021, 55, 12943-12950. | 10.0 | 7         |
| 48 | Spectroelectrochemical Sensor: Development and Applications. ECS Transactions, 2009, 19, 129-134.                                                                                                                              | 0.5  | 6         |
| 49 | In Situ Spectroscopic Analysis and Quantification of [Tc(CO)3]+ in Hanford Tank Waste.<br>Environmental Science & Technology, 2018, 52, 7796-7804.                                                                             | 10.0 | 6         |
| 50 | In situ perchlorate determination on Purolite A850 ion exchange resin via Raman spectroscopy.<br>Vibrational Spectroscopy, 2007, 44, 316-323.                                                                                  | 2.2  | 5         |
| 51 | <i>trans</i> -K <sub>3</sub> [TcO <sub>2</sub> (CN) <sub>4</sub> ]. Acta Crystallographica Section E:<br>Structure Reports Online, 2010, 66, i61-i62.                                                                          | 0.2  | 5         |
| 52 | <i>In Situ</i> Quantification of [Re(CO) <sub>3</sub> ] <sup>+</sup> by Fluorescence Spectroscopy in Simulated Hanford Tank Waste. Environmental Science & Technology, 2018, 52, 1357-1364.                                    | 10.0 | 5         |
| 53 | Spectroelectrochemical Sensor for Technetium: Preconcentration and Quantification of Pertechnetate in Polymer-Modified Electrodes. ACS Symposium Series, 2005, , 306-321.                                                      | 0.5  | 4         |
| 54 | Spectroelectrochemical Sensor for Spectroscopically Hardâ€toâ€detect Metals by <i>in situ</i><br>Formation of a Luminescent Complex Using Ru(II) as a Model Compound. Electroanalysis, 2018, 30,<br>2644-2652.                 | 2.9  | 4         |

Sam Bryan

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Combined Raman and Turbidity Probe for Real-Time Analysis of Variable Turbidity Streams. Analytical<br>Chemistry, 2022, 94, 3652-3660.                          | 6.5 | 4         |
| 56 | On-Line Raman Measurement of the Radiation-Enhanced Reaction of Cellobiose with Hydrogen<br>Peroxide. ACS Omega, 2021, 6, 35457-35466.                          | 3.5 | 4         |
| 57 | Incorporating spectroscopic on-line monitoring as a method of detection for a Lewis cell setup.<br>Analyst, The, 2017, 142, 2426-2433.                          | 3.5 | 3         |
| 58 | Characterization of uranium ore concentrate chemical composition via Raman spectroscopy. , 2018, , .                                                            |     | 2         |
| 59 | Microfluidic In Situ Spectrophotometric Approaches to Tackle Actinides Analysis in Multiple<br>Oxidation States. Applied Spectroscopy, 2022, , 000370282110639. | 2.2 | 2         |
| 60 | Spectroelectrochemistry as a strategy for improving selectivity of sensors for security and defense applications. Proceedings of SPIE, 2012, , .                | 0.8 | 1         |
| 61 | Spectroelectrochemical sensors: new polymer films for improved sensitivity. Proceedings of SPIE, 2014, , .                                                      | 0.8 | 1         |
| 62 | Spectroelectrochemical Sensor for [Re(dmpe)3]+ Where dmpe = 1,2-bis(dimethylphosphino)ethane. ECS<br>Meeting Abstracts, 2008, , .                               | 0.0 | 0         |
| 63 | Electrochemical Oxidation and Speciation of Lanthanides in Potassium Carbonate Solution. Journal of the Electrochemical Society, 0, , .                         | 2.9 | Ο         |