Josep Rubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177813/publications.pdf

Version: 2024-02-01

257450 265206 46 1,836 24 42 h-index citations g-index papers 51 51 51 2652 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Screening of Native (Poly)phenols and Gutâ€Related Metabolites on 3D HCT116 Spheroids Reveals Gut Health Benefits of a Flavanâ€3â€ol Metabolite. Molecular Nutrition and Food Research, 2022, 66, e2101043.	3.3	12
2	Metabolomic Changes after Coffee Consumption: New Paths on the Block. Molecular Nutrition and Food Research, 2021, 65, 2000875.	3.3	11
3	Exploiting Intestinal Organoids and Foodomics Strategies for Studying the Role of Diet and Host Responses., 2021,, 508-515.		O
4	Risk-benefit in food safety and nutrition – Outcome of the 2019 Parma Summer School. Food Research International, 2021, 141, 110073.	6.2	16
5	Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods, 2021, 10, 2639.	4.3	49
6	The Organoid Era Permits the Development of New Applications to Study Glioblastoma. Cancers, 2020, 12, 3303.	3.7	24
7	Intestinal Organoids: A Tool for Modelling Diet–Microbiome–Host Interactions. Trends in Endocrinology and Metabolism, 2020, 31, 848-858.	7.1	33
8	Metabolic Profiling of Human Plasma and Urine, Targeting Tryptophan, Tyrosine and Branched Chain Amino Acid Pathways. Metabolites, 2019, 9, 261.	2.9	49
9	The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. International Journal of Molecular Sciences, 2019, 20, 5277.	4.1	21
10	Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Molecular Nutrition and Food Research, 2019, 63, e1800384.	3.3	173
11	Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chemistry, 2019, 284, 162-170.	8.2	33
12	Advanced analytical strategies for measuring free bioactive milk sugars: from composition and concentrations to human metabolic response. Analytical and Bioanalytical Chemistry, 2018, 410, 3445-3462.	3.7	4
13	Untargeted metabolomics reveals links between Tiger nut (<i>Cyperus esculentus L</i> .) and its geographical origin by metabolome changes associated with membrane lipids. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1861-1869.	2.3	9
14	A novel approach based on untargeted lipidomics reveals differences in the lipid pattern among durum and common wheat. Food Chemistry, 2018, 240, 775-783.	8.2	50
15	Untargeted metabolomics based on ultra-high-performance liquid chromatography–high-resolution mass spectrometry merged with chemometrics: A new predictable tool for an early detection of mycotoxins. Food Chemistry, 2017, 224, 423-431.	8.2	50
16	Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds. Chemistry and Biodiversity, 2017, 14, e1600192.	2.1	11
17	Untargeted metabolomics of fresh and heat treatment Tiger nut (Cyperus esculentus L.) milks reveals further insight into food quality and nutrition. Journal of Chromatography A, 2017, 1514, 80-87.	3.7	25
18	Development of a fast and cost-effective gas chromatography–mass spectrometry method for the quantification of short-chain and medium-chain fatty acids in human biofluids. Analytical and Bioanalytical Chemistry, 2017, 409, 5555-5567.	3.7	61

#	Article	lF	Citations
19	<i>Allium</i> Discoloration: Color Compounds Formed during Greening of Processed Garlic. Journal of Agricultural and Food Chemistry, 2017, 65, 10615-10620.	5.2	20
20	Strategies to Document Adulteration of Food Supplement Based on Sea Buckthorn Oil: a Case Study. Food Analytical Methods, 2017, 10, 1317-1327.	2.6	9
21	Metabolomic Strategies Based on High-Resolution Mass Spectrometry as a Tool for Recognition of GMO (MON 89788 Variety) and Non-GMO Soybean: a Critical Assessment of Two Complementary Methods. Food Analytical Methods, 2017, 10, 3723-3737.	2.6	11
22	Characterization and Discrimination of Ancient Grains: A Metabolomics Approach. International Journal of Molecular Sciences, 2016, 17, 1217.	4.1	39
23	Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic–high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2016. 1015-1016. 22-33.	2.3	14
24	Saffron authentication based on liquid chromatography high resolution tandem mass spectrometry and multivariate data analysis. Food Chemistry, 2016, 204, 201-209.	8.2	95
25	Prevalence of Bacteria and Absence of Anisakid Parasites in Raw and Prepared Fish and Seafood Dishes in Spanish Restaurants. Journal of Food Protection, 2015, 78, 615-618.	1.7	6
26	Advances in high-resolution mass spectrometry based on metabolomics studies for food – a review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1685-1708.	2.3	112
27	Natural co-occurrence of mycotoxins in wheat grains from Italy and Syria. Food Chemistry, 2014, 157, 111-118.	8.2	101
28	Metabolic fingerprinting based on high-resolution tandem mass spectrometry: a reliable tool for wine authentication?. Analytical and Bioanalytical Chemistry, 2014, 406, 6791-6803.	3.7	59
29	Evaluation of mycotoxins and their metabolites in human breast milk using liquid chromatography coupled to high resolution mass spectrometry. Analytica Chimica Acta, 2014, 820, 39-46.	5.4	86
30	Mass spectrometry strategies for mycotoxins analysis in European beers. Food Control, 2013, 30, 122-128.	5.5	36
31	Survey of microbial quality of plant-based foods served in restaurants. Food Control, 2013, 30, 418-422.	5.5	21
32	A survey of mycotoxins in random street-vended snacks from Lagos, Nigeria, using QuEChERS-HPLC-MS/MS. Food Control, 2013, 32, 673-677.	5.5	18
33	Occurrence of fumonisins in organic and conventional cereal-based products commercialized in France, Germany and Spain. Food and Chemical Toxicology, 2013, 56, 387-391.	3.6	27
34	Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. Talanta, 2012, 99, 712-719.	5.5	106
35	Study of mycotoxin calibration approaches on the example of trichothecenes analysis from flour. Food and Chemical Toxicology, 2012, 50, 2034-2041.	3.6	12
36	Incidence of microorganisms from fresh orange juice processed by squeezing machines. Food Control, 2012, 23, 282-285.	5.5	31

#	Article	IF	CITATION
37	Occurrence of fourteen mycotoxins in tiger-nuts. Food Control, 2012, 25, 374-379.	5.5	17
38	Applicability of hybrid linear ion trap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food. Journal of Chromatography A, 2012, 1223, 84-92.	3.7	24
39	Application of an HPLC–MS/MS method for mycotoxin analysis in commercial baby foods. Food Chemistry, 2012, 133, 176-183.	8.2	91
40	Application of hybrid linear ion trap-high resolution mass spectrometry to the analysis of mycotoxins in beer. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 1438-1446.	2.3	21
41	Rapid mycotoxin analysis in human urine: A pilot study. Food and Chemical Toxicology, 2011, 49, 2299-2304.	3.6	61
42	Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-mycotoxin determination in different flours using LC–MS/MS. Talanta, 2011, 85, 206-215.	5. 5	71
43	One-year monitoring of aflatoxins and ochratoxin A in tiger-nuts and their beverages. Food Chemistry, 2011, 127, 822-826.	8.2	35
44	Optimization of Matrix Solid-Phase Dispersion method for simultaneous extraction of aflatoxins and OTA in cereals and its application to commercial samples. Talanta, 2010, 82, 567-574.	5. 5	62
45	Glucose influence on the production of T-2 toxin by Fusarium sporotrichioides. Toxicon, 2010, 55, 1157-1161.	1.6	5
46	Microbial Contamination of Milk and Dairy Products from Restaurants in Spain. Foodborne Pathogens and Disease, 2009, 6, 1269-1272.	1.8	13