
Reddithota J Krupadam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption-desorption dynamics of synthetic and naturally weathered microfibers with toxic heavy metals and their ecological risk in an estuarine ecosystem. Environmental Research, 2022, 207, 112198.	7.5	12
2	Reduced graphene oxide -MnO2 nanocomposite for CO2 capture from flue gases at elevated temperatures. Science of the Total Environment, 2022, 816, 151522.	8.0	11
3	Reduced emission Firecrackers: Barium-free pyrotechnic formulations. Fuel, 2022, 317, 123500.	6.4	9
4	Melamine-based resins and their carbons for CO2 capture: a review. Emergent Materials, 2021, 4, 545-563.	5.7	12
5	Graphene nanoplatelets embedded polymer: An efficient endodontic material for root canal therapy. Materials Science and Engineering C, 2021, 121, 111864.	7.3	4
6	Graphene/fluorescein dye-based sensor for detecting As(III) in drinking water. Scientific Reports, 2021, 11, 17321.	3.3	6
7	Graphene nanosheets from hazardous/solid wastes: An efficient CO2 capture material. Journal of Environmental Chemical Engineering, 2021, 9, 105839.	6.7	9
8	High performance CO2 capture at elevated temperatures by using cenospheres prepared from solid waste, fly ash. Chemosphere, 2021, 284, 131405.	8.2	9
9	Graphene oxide -copper nanocomposite: An efficient material for rapid degradation of organic dyes. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100545.	2.9	0
10	Improved heterogeneous catalytic conversion of methane to methanol at ambient conditions. Journal of Environmental Chemical Engineering, 2020, 8, 104103.	6.7	4
11	Highly selective electrochemical nanofilm sensor for detection of carcinogenic PAHs in environmental samples. Talanta, 2020, 219, 121273.	5.5	19
12	Molecularly imprinted nanoparticles (nanoMIPs): an efficient new adsorbent for removal of arsenic from water. Journal of Materials Science, 2020, 55, 6810-6825.	3.7	15
13	Molecularly imprinted microparticles (microMIPs) embedded with reduced graphene oxide for capture and destruction of E. coli in drinking water. Materials Science and Engineering C, 2020, 110, 110672.	7.3	9
14	Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2020, 398, 122994.	12.4	122
15	Amino acid-imprinted polymers as highly selective CO2 capture materials. Environmental Chemistry Letters, 2019, 17, 465-472.	16.2	18
16	Nanoporous imprinted polymers (nanoMIPs) for controlled release of cancer drug. Materials Science and Engineering C, 2019, 99, 222-230.	7.3	21
17	Adsorption of carbon dioxide on naturally occurring solid amino acids. Journal of Environmental Chemical Engineering, 2016, 4, 3170-3176.	6.7	15
18	Polythiophene nanofilms for sensitive fluorescence detection of viruses in drinking water. Biosensors and Bioelectronics, 2016, 82, 20-25.	10.1	20

Reddithota J Krupadam

#	Article	IF	CITATIONS
19	Pyrene-imprinted polythiophene sensors for detection of polycyclic aromatic hydrocarbons. Sensors and Actuators B: Chemical, 2016, 228, 693-701.	7.8	23
20	Computational strategies for understanding the nature of interaction in dioxin imprinted nanoporous trappers. Journal of Molecular Recognition, 2015, 28, 427-437.	2.1	37
21	Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems. Journal of Hazardous Materials, 2014, 274, 1-7.	12.4	12
22	Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent. Environmental Science and Pollution Research, 2014, 21, 6603-6611.	5.3	20
23	Novel molecularly imprinted polymeric microspheres for preconcentration and preservation of polycyclic aromatic hydrocarbons from environmental samples. Analytical and Bioanalytical Chemistry, 2014, 406, 5313-5321.	3.7	25
24	Molecularly Imprinted Polymer Receptors for Nicotine Recognition in Biological systems. Molecular Imprinting, 2013, 1, .	1.8	7
25	Density Field Theory Approach to Design Multi-Template Imprinted Polymers for Carcinogenic PAHs Sensing. Combinatorial Chemistry and High Throughput Screening, 2013, 16, 682-694.	1.1	10
26	Removal of 17β-Estradiol from Groundwater Using Nanoporous Molecularly Imprinted Polymer Adsorbent. Journal of Hazardous, Toxic, and Radioactive Waste, 2012, 16, 183-189.	2.0	5
27	Nanoporous Polymeric Material for Remediation of PAHs Polluted Water. Polycyclic Aromatic Compounds, 2012, 32, 313-333.	2.6	11
28	Removal of cyanotoxins from surface water resources using reusable molecularly imprinted polymer adsorbents. Environmental Science and Pollution Research, 2012, 19, 1841-1851.	5.3	37
29	Combinatorial screening of polymer precursors for preparation of benzo[α] pyrene imprinted polymer: an ab initio computational approach. Journal of Molecular Modeling, 2012, 18, 1969-1981.	1.8	44
30	Characterization of Chromophoric Dissolved Organic Matter (CDOM) in Rainwater Using Fluorescence Spectrophotometry. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 215-218.	2.7	36
31	An efficient fluorescent polymer sensing material for detection of traces of benzo[a]pyrene in environmental samples. Environmental Chemistry Letters, 2011, 9, 389-395.	16.2	7
32	Removal of endocrine disrupting chemicals from contaminated industrial groundwater using chitin as a biosorbent. Journal of Chemical Technology and Biotechnology, 2011, 86, 367-374.	3.2	20
33	Effect of Solvents on the Adsorption Properties of Benzo[α]pyrene-imprinted Polymers. Adsorption Science and Technology, 2010, 28, 79-88.	3.2	2
34	Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction. Analytical and Bioanalytical Chemistry, 2010, 397, 3097-3106.	3.7	32
35	Adsorption of fluoride from water by surface-functionalized polyurethane foam. Water Science and Technology, 2010, 62, 759-765.	2.5	18
36	Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Research, 2010, 44, 681-688.	11.3	101

#	Article	IF	CITATIONS
37	Fluorescence Spectrophotometer Analysis of Polycyclic Aromatic Hydrocarbons in Environmental Samples Based on Solid Phase Extraction Using Molecularly Imprinted Polymer. Environmental Science & Technology, 2009, 43, 2871-2877.	10.0	57
38	Molecularly Imprinted Nanoporous Polyacrylate Surface for Benzo(<i>α</i>)Pyrene Recognition. Journal of Nanoscience and Nanotechnology, 2009, 9, 5441-5447.	0.9	10
39	Benzo(α)pyrene imprinted polyacrylate nanosurfaces: Adsorption and binding characteristics. Sensors and Actuators B: Chemical, 2007, 124, 444-451.	7.8	15
40	Forest bound estuaries are higher methane emitters than paddy fields: A case of Godavari estuary, East Coast of India. Atmospheric Environment, 2007, 41, 4819-4827.	4.1	21
41	Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India. Environmental Modeling and Assessment, 2007, 12, 145-155.	2.2	23