
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 2012, 112, 841-852.	1.4	1,116
2	Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 382-386.	1.7	616
3	Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 2012, 94, 287-293.	1.7	529
4	Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and its Activity Against Some Human Pathogenic Bacteria. Current Nanoscience, 2008, 4, 141-144.	0.7	478
5	Fabrication of silver nanoparticles by <i>Phoma glomerata</i> and its combined effect against <i>Escherichia coli</i> , <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i> . Letters in Applied Microbiology, 2009, 48, 173-179.	1.0	419
6	Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Applied Microbiology and Biotechnology, 2014, 98, 1001-1009.	1.7	408
7	Exploitation of <i>Aspergillus niger</i> for Synthesis of Silver Nanoparticles. Journal of Biobased Materials and Bioenergy, 2008, 2, 243-247.	0.1	405
8	Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. Journal of Pharmaceutical Sciences, 2014, 103, 1931-1944.	1.6	398
9	Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied Microbiology and Biotechnology, 2014, 98, 1951-1961.	1.7	341
10	Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 2009, 11, 2079-2085.	0.8	314
11	Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology, 2015, 31, 865-873.	1.7	269
12	Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology, 2016, 42, 46-56.	2.7	218
13	Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 2013, 8, 4303.	3.3	215
14	Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 105-110.	1.7	180
15	Widely used catalysts in biodiesel production: a review. RSC Advances, 2020, 10, 41625-41679.	1.7	179
16	Mycogenic metal nanoparticles: progress and applications. Biotechnology Letters, 2010, 32, 593-600.	1.1	178
17	Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology, 2016, 42, 1-24.	2.7	167
18	Synthesis of Silver Nanoparticles Using Callus Extract of Carica papaya — A First Report. Journal of Plant Biochemistry and Biotechnology, 2009, 18, 83-86.	0.9	163

#	Article	IF	CITATIONS
19	Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. International Journal of Pharmaceutics, 2017, 519, 67-78.	2.6	163
20	Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Applied Microbiology and Biotechnology, 2014, 98, 8083-8097.	1.7	162
21	Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnology Letters, 2015, 37, 2099-2120.	1.1	153
22	Circular economy aspects of lignin: Towards a lignocellulose biorefinery. Renewable and Sustainable Energy Reviews, 2020, 130, 109977.	8.2	135
23	Silver Nanoparticles: Novel Antimicrobial Agent Synthesized from an Endophytic Fungus Pestalotia sp. Isolated from Leaves of Syzygium cumini (L). Nano Biomedicine and Engineering, 2011, 3, .	0.3	130
24	Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews, 2018, 7, 303-315.	2.6	111
25	Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. International Journal of Pharmaceutics, 2015, 496, 159-172.	2.6	106
26	Biofabrication of Silver Nanoparticles by Opuntia ficus-indica: In vitro Antibacterial Activity and Study of the Mechanism Involved in the Synthesis. Current Nanoscience, 2010, 6, 370-375.	0.7	99
27	Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arabian Journal of Chemistry, 2020, 13, 3172-3182.	2.3	93
28	Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose, 2017, 24, 5529-5540.	2.4	87
29	Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production. Catalysis Reviews - Science and Engineering, 2019, 61, 1-26.	5.7	86
30	Smart nanopackaging for theÂenhancement of foodÂshelf life. Environmental Chemistry Letters, 2019, 17, 277-290.	8.3	84
31	Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. Journal of Fungi (Basel, Switzerland), 2021, 7, 139.	1.5	83
32	<i>Murraya koenigii</i> -mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanoscience Methods, 2012, 1, 25-36.	1.0	78
33	A New Report on Mycosynthesis of Silver Nanoparticles by Fusarium culmorum. Current Nanoscience, 2010, 6, 376-380.	0.7	77
34	Recent advances in use of silver nanoparticles as antimalarial agents. International Journal of Pharmaceutics, 2017, 526, 254-270.	2.6	76
35	Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnology Reviews, 2016, 5, .	2.6	75
36	Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal. Symmetry, 2020, 12, 256.	1.1	66

#	Article	IF	CITATIONS
37	Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. Frontiers in Energy Research, 2020, 8, .	1.2	62
38	The emerging role of metallic nanoparticles in food. Applied Microbiology and Biotechnology, 2020, 104, 2373-2383.	1.7	62
39	Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. International Journal of Pharmaceutics, 2017, 532, 139-148.	2.6	58
40	Emerging nanotechnology for detection of mycotoxins in food and feed. International Journal of Food Sciences and Nutrition, 2015, 66, 363-370.	1.3	56
41	Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Review of Anti-Infective Therapy, 2020, 18, 367-379.	2.0	56
42	Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine. Expert Review of Anti-Infective Therapy, 2016, 14, 969-978.	2.0	53
43	Synthesis of silver nanoparticles by <i>Phoma gardeniae</i> and <i>in vitro</i> evaluation of their efficacy against human diseaseâ€causing bacteria and fungi. IET Nanobiotechnology, 2015, 9, 71-75.	1.9	51
44	Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2015, 133, 296-303.	2.5	47
45	Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control, 2017, 71, 143-151.	2.8	45
46	Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Applied Microbiology and Biotechnology, 2018, 102, 6827-6839.	1.7	45
47	<i>Lawsonia inermisâ€</i> mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnology, 2014, 8, 172-178.	1.9	44
48	New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 2019, 13, 776-788.	1.9	44
49	Phoma Saccardo: Distribution, secondary metabolite production and biotechnological applications. Critical Reviews in Microbiology, 2009, 35, 182-196.	2.7	43
50	Pretreatment of sugarcane bagasse using two different acid-functionalized magnetic nanoparticles: A novel approach for high sugar recovery. Renewable Energy, 2020, 150, 957-964.	4.3	41
51	Potential Role of Biological Systems in Formation of Nanoparticles: Mechanism of Synthesis and Biomedical Applications. Current Nanoscience, 2013, 9, 576-587.	0.7	40
52	Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnology Reviews, 2022, 11, 2123-2140.	2.6	40
53	Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech, 2019, 9, 230.	1.1	39
54	Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know?. Nanomaterials, 2021, 11, 2901.	1.9	38

#	Article	IF	CITATIONS
55	Nanosilver: an inorganic nanoparticle with myriad potential applications. Nanotechnology Reviews, 2014, 3, .	2.6	37
56	Three <i>Phoma</i> spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy. IET Nanobiotechnology, 2015, 9, 280-287.	1.9	36
57	Nanotechnology based anti-infectives to fight microbial intrusions. Journal of Applied Microbiology, 2016, 120, 527-542.	1.4	36
58	Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renewable Energy, 2021, 163, 1343-1355.	4.3	35
59	From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnology Advances, 2019, 37, 154-176.	6.0	34
60	Evaluation of antibacterial efficacy of sulfur nanoparticles alone and in combination with antibiotics against multidrug-resistant uropathogenic bacteria. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 381-390.	0.9	31
61	Nanotechnology-based promising strategies for the management of COVID-19: current development and constraints. Expert Review of Anti-Infective Therapy, 2022, 20, 1299-1308.	2.0	28
62	Field Application of ZnO and TiO2 Nanoparticles on Agricultural Plants. Agronomy, 2021, 11, 2281.	1.3	26
63	Marine-derived Phoma—the gold mine of bioactive compounds. Applied Microbiology and Biotechnology, 2018, 102, 9053-9066.	1.7	25
64	Current trends in myxobacteria research. Annals of Microbiology, 2016, 66, 17-33.	1.1	24
65	Bioenergy and Biofuels: Nanotechnological Solutions for Sustainable Production. Green Chemistry and Sustainable Technology, 2017, , 3-18.	0.4	24
66	Immobilized Nanoparticles-Mediated Enzymatic Hydrolysis of Cellulose for Clean Sugar Production: A Novel Approach. Current Nanoscience, 2019, 15, 296-303.	0.7	24
67	Copper nanoflowers as effective antifungal agents for plant pathogenic fungi. IET Nanobiotechnology, 2017, 11, 546-551.	1.9	23
68	Acid-functionalized magnetic nanocatalysts mediated pretreatment of sugarcane straw: an eco-friendly and cost-effective approach. Cellulose, 2020, 27, 7067-7078.	2.4	21
69	Biogenically engineered nanoparticles inhibit <i>Fusarium oxysporum</i> causing softâ€rot of ginger. IET Nanobiotechnology, 2018, 12, 1084-1089.	1.9	21
70	Fungi-Mediated Synthesis of Silver Nanoparticles: Characterization Processes and Applications. , 2010, , 425-449.		19
71	Impacts of sustainable biofuels production from biomass. , 2019, , 327-346.		19
72	Emerging Trends in Pullulan-Based Antimicrobial Systems for Various Applications. International Journal of Molecular Sciences, 2021, 22, 13596.	1.8	19

#	Article	IF	CITATIONS
73	Silver Nanoparticles as Novel Antibacterial and Antiviral Agents. Frontiers in Nanobiomedical Research, 2014, , 565-594.	0.1	18
74	Nanoremediation. , 2014, , 233-250.		18
75	The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases. Critical Reviews in Biotechnology, 2016, 36, 777-787.	5.1	17
76	Biophysical Phenotyping as an Essential Tool for Understanding Host–Microbe Interaction. , 2017, , 65-80.		14
77	Management of Phytophthora parasitica causing gummosis in citrus using biogenic copper oxide nanoparticles. Journal of Applied Microbiology, 2022, 132, 3142-3154.	1.4	13
78	Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent. IET Nanobiotechnology, 2016, 10, 200-205.	1.9	12
79	Genetic diversity among Indian phytopathogenic isolates of Fusarium semitectum Berkeley and Ravenel. Advances in Bioscience and Biotechnology (Print), 2011, 02, 142-148.	0.3	12
80	Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell. IET Nanobiotechnology, 2015, 9, 66-70.	1.9	10
81	Copper in Medicine: Perspectives and Toxicity. , 2018, , 95-112.		9
82	Phycofabrication Of Silver Nanoparticles And Their Antibacterial Activity Against Human Pathogens. Advanced Materials Letters, 2016, 7, 1010-1014.	0.3	9
83	Screening of DifferentFusariumSpecies to Select Potential Species for the Synthesis of Silver Nanoparticles. Journal of the Brazilian Chemical Society, 2013, , .	0.6	9
84	Recent trends in the development of nano-bioactive compounds and delivery systems. , 2020, , 409-431.		8
85	Catalytic hydrolysis of cellobiose using different acidâ€functionalised Fe 3 O 4 magnetic nanoparticles. IET Nanobiotechnology, 2020, 14, 40-46.	1.9	8
86	A HARNESSING THE POTENTIAL OF NOVEL BIOACTIVE COMPOUNDS PRODUCED BY ENDOPHYTIC Phoma spp.: BIOMEDICAL AND AGRICULTURAL APPLICATIONS. Acta Scientiarum Polonorum, Hortorum Cultus, 2020, 19, 31-45.	0.3	8
87	Cyto-, Geno-, and Ecotoxicity of Copper Nanoparticles. Nanomedicine and Nanotoxicology, 2014, , 325-345.	0.1	7
88	Tackling the Problem of Tuberculosis by Nanotechnology. , 2015, , 133-149.		7
89	Mycosynthesized Silver Nanoparticles as Potent Growth Inhibitory Agents Against Selected Waterborne Human Pathogens. Clean - Soil, Air, Water, 2017, 45, 1600247.	0.7	6
90	Recent advances on mycotic keratitis caused by dematiaceous hyphomycetes. Journal of Applied Microbiology, 2021, 131, 1652-1667.	1.4	6

#	Article	IF	CITATIONS
91	Nanotechnology in the Management of Bone Diseases and as Regenerative Medicine. Current Nanoscience, 2018, 14, 95-103.	0.7	6
92	Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. Green Chemistry and Sustainable Technology, 2017, , 153-171.	0.4	5
93	The Flop Side of Using Heavy Metal(oids)s in the Traditional Medicine: Toxic Insults and Injury to Human Health. , 2018, , 257-276.		4
94	Socioeconomic impacts of biofuel production from lignocellulosic biomass. , 2019, , 347-366.		4
95	Role of nanotechnology in the detection of mycotoxins. , 2020, , 11-33.		4
96	Application of Metal Oxide Nanostructures as Heterogeneous Catalysts for Biodiesel Production. ACS Symposium Series, 2020, , 261-289.	0.5	4
97	Superior in vivo Wound-Healing Activity of Mycosynthesized Silver Nanogel on Different Wound Models in Rat. Frontiers in Microbiology, 2022, 13, .	1.5	4
98	Understanding the Mycorrhiza-Nanoparticles Interaction. , 2017, , 311-324.		3
99	Nanoformulations for Wound Infections. , 2017, , 223-246.		3
100	Nanotechnological Interventions for Drug Delivery in Eye Diseases. , 2017, , 279-306.		3
101	Metal Nanoparticles in Management of Diseases of the Central Nervous System. , 2018, , 81-98.		3
102	Bio-distribution and Toxicity of Noble Metal Nanoparticles in Humans. , 2017, , 469-482.		2
103	Nanotherapy: a next generation hallmark for combating cancer. , 2017, , 811-830.		2
104	Evolving nanotechnological trends in the management of mycotic keratitis. IET Nanobiotechnology, 2019, 13, 464-470.	1.9	2
105	Phyto-Fabrication of Different Nanoparticles and Evaluation of their Antibacterial and Anti-Biofilm Efficacy. Current Nanoscience, 2021, 16, 1002-1015.	0.7	2
106	Fermentative Production of Lasiodiplodan by Lasiodiplodia theobromae CCT3966 from Pretreated Sugarcane Straw. Sustainability, 2021, 13, 9697.	1.6	2
107	Application of Microbial-Synthesized Nanoparticles in Food Industries. Materials Horizons, 2021, , 399-424.	0.3	2
108	Trichothecenes as Toxin and Bioweapons: Prevention and Control. , 2009, , 291-305.		2

108 Trichothecenes as Toxin and Bioweapons: Prevention and Control. , 2009, , 291-305.

7

#	Article	IF	CITATIONS
109	Nanotechnology-Based Developments in Biofuel Production: Current Trends and Applications. , 2018, , 289-305.		1
110	Biological Control of Soft-Rot of Ginger: Current Trends and Future Prospects. , 2019, , 347-367.		1
111	The Bone Biology and the Nanotechnology for Bone Engineering and Bone Diseases. , 2020, , 223-244.		1
112	Nanoremediation of toxic contaminants from the environment: challenges and scopes. , 2022, , 601-615.		1
113	Nanotechnology for Biofuels: Progress and Pitfalls. Nanotechnology in the Life Sciences, 2021, , 161-174.	0.4	0
114	Cellulase Enzyme Immobilization on Magnetic Nanoparticles for Clean Sugar Production from Cellulose. , 0, , .		0