Peter Nordlander

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3177352/peter-nordlander-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63,909 126 248 405 g-index h-index citations papers 8.02 10.2 70,535 437 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
405	Al@TiO Core-Shell Nanoparticles for Plasmonic Photocatalysis ACS Nano, 2022,	16.7	6
404	Vacuum ultraviolet nonlinear metalens Science Advances, 2022, 8, eabn5644	14.3	2
403	Plasmon-induced trap filling at grain boundaries in perovskite solar cells. <i>Light: Science and Applications</i> , 2021 , 10, 219	16.7	5
402	Plasmon Energy Transfer in Hybrid Nanoantennas. ACS Nano, 2021, 15, 9522-9530	16.7	8
401	Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations. <i>Nano Letters</i> , 2021 , 21, 2658-2665	11.5	4
400	A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients. <i>ACS Nano</i> , 2021 , 15, 8761-8769	16.7	12
399	Hot carrier multiplication in plasmonic photocatalysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	12
398	UV-Resonant Al Nanocrystals: Synthesis, Silica Coating, and Broadband Photothermal Response. <i>Nano Letters</i> , 2021 , 21, 536-542	11.5	10
397	All-Optically Reconfigurable Plasmonic Metagrating for Ultrafast Diffraction Management. <i>Nano Letters</i> , 2021 , 21, 1345-1351	11.5	7
396	Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems. <i>Nano Letters</i> , 2021 , 21, 1083-1089	11.5	11
395	Site-Selective Nanoreactor Deposition on Photocatalytic Al Nanocubes. <i>Nano Letters</i> , 2020 , 20, 4550-45	5 5 771.5	16
394	Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions. <i>Nano Letters</i> , 2020 , 20, 6067-6075	11.5	19
393	Plasmon-driven carbonâfluorine (C(sp3)âfl) bond activation with mechanistic insights into hot-carrier-mediated pathways. <i>Nature Catalysis</i> , 2020 , 3, 564-573	36.5	29
392	Polarized evanescent waves reveal trochoidal dichroism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 16143-16148	11.5	8
391	Resonant energy transfer enhances solar thermal desalination. <i>Energy and Environmental Science</i> , 2020 , 13, 968-976	35.4	20
390	Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. <i>Nano Letters</i> , 2020 , 20, 2087-2093	11.5	67
389	Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. <i>Nano Letters</i> , 2020 , 20, 3499-3505	11.5	12

(2019-2020)

388	Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. <i>Nature Energy</i> , 2020 , 5, 61-70	62.3	213
387	Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. <i>Nature Photonics</i> , 2020 , 14, 723-727	33.9	21
386	Giant photothermoelectric effect in silicon nanoribbon photodetectors. <i>Light: Science and Applications</i> , 2020 , 9, 120	16.7	10
385	Aluminum Nanocrystals Grow into Distinct Branched Aluminum Nanowire Morphologies. <i>Nano Letters</i> , 2020 , 20, 6644-6650	11.5	2
384	Morphology-Dependent Reactivity of a Plasmonic Photocatalyst. ACS Nano, 2020, 14, 12054-12063	16.7	34
383	Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission. <i>ACS Nano</i> , 2020 , 14, 15757-15765	16.7	30
382	Effects of Electronic Structure on Molecular Plasmon Dynamics. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 20450-20457	3.8	6
381	Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. <i>ACS Energy Letters</i> , 2019 , 4, 2458-2465	20.1	26
380	Anti-Stokes Emission from Hot Carriers in Gold Nanorods. <i>Nano Letters</i> , 2019 , 19, 1067-1073	11.5	38
379	Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. <i>Nano Letters</i> , 2019 , 19, 3838-3845	11.5	24
378	Photocatalytic Hydrogenation of Graphene Using Pd Nanocones. <i>Nano Letters</i> , 2019 , 19, 4413-4419	11.5	26
377	Solar thermal desalination as a nonlinear optical process. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 13182-13187	11.5	48
376	Plasmonic Photocatalysis of Nitrous Oxide into N and O Using Aluminum-Iridium Antenna-Reactor Nanoparticles. <i>ACS Nano</i> , 2019 , 13, 8076-8086	16.7	55
375	Response to Comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis". <i>Science</i> , 2019 , 364,	33.3	102
374	Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance. Journal of Physical Chemistry Letters, 2019 , 10, 1743-1749	6.4	13
373	Ultrafast Electron Dynamics in Single Aluminum Nanostructures. <i>Nano Letters</i> , 2019 , 19, 3091-3097	11.5	28
372	Metal-organic frameworks tailor the properties of aluminum nanocrystals. <i>Science Advances</i> , 2019 , 5, eaav5340	14.3	50
371	Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. <i>ACS Nano</i> , 2019 , 13, 3117-3124	16.7	39

370	Aluminum Nanocubes Have Sharp Corners. ACS Nano, 2019, 13, 9682-9691	16.7	33
369	Plasmon-Mediated Catalytic O2 Dissociation on Ag Nanostructures: Hot Electrons or Near Fields?. <i>ACS Energy Letters</i> , 2019 , 4, 1803-1809	20.1	86
368	Generating Third Harmonic Vacuum Ultraviolet Light with a TiO Metasurface. <i>Nano Letters</i> , 2019 , 19, 8972-8978	11.5	32
367	Toroidal Dipole-Enhanced Third Harmonic Generation of Deep Ultraviolet Light Using Plasmonic Meta-atoms. <i>Nano Letters</i> , 2019 , 19, 605-611	11.5	63
366	Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1716-1724	16.4	24
365	Plasmonic nanoparticle-based epoxy photocuring: A deeper look. <i>Materials Today</i> , 2019 , 27, 14-20	21.8	8
364	Wavelength-Dependent Optical Force Imaging of Bimetallic Al-Au Heterodimers. <i>Nano Letters</i> , 2018 , 18, 2040-2046	11.5	34
363	Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers. <i>ACS Nano</i> , 2018 , 12, 976-985	16.7	79
362	Aluminum Nanorods. <i>Nano Letters</i> , 2018 , 18, 1234-1240	11.5	54
361	Environmental Symmetry Breaking Promotes Plasmon Mode Splitting in Gold Nanotriangles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13259-13266	3.8	26
360	Vacuum Ultraviolet Light-Generating Metasurface. <i>Nano Letters</i> , 2018 , 18, 5738-5743	11.5	52
359	Combining Plasmonic Hot Carrier Generation with Free Carrier Absorption for High-Performance Near-Infrared Silicon-Based Photodetection. <i>ACS Photonics</i> , 2018 , 5, 3472-3477	6.3	66
358	Routes to Potentially Safer T Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence. <i>ACS Nano</i> , 2018 , 12, 8214-8223	16.7	28
357	Relaxation of Plasmon-Induced Hot Carriers. ACS Photonics, 2018, 5, 2584-2595	6.3	79
356	Exploiting Evanescent Field Polarization for Giant Chiroptical Modulation from Achiral Gold Half-Rings. <i>ACS Nano</i> , 2018 , 12, 11657-11663	16.7	12
355	Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. <i>Science</i> , 2018 , 362, 69-7	233.3	494
354	Polymer-Directed Growth of Plasmonic Aluminum Nanocrystals. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15412-15418	16.4	33
353	Optical-Force-Dominated Directional Reshaping of Au Nanodisks in Al-Au Heterodimers. <i>Nano Letters</i> , 2018 , 18, 6509-6514	11.5	11

(2017-2018)

352	A room-temperature mid-infrared photodetector for on-chip molecular vibrational spectroscopy. Applied Physics Letters, 2018 , 113, 101105	3.4	13	
351	Lifetime dynamics of plasmons in the few-atom limit. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 9134-9139	11.5	21	
350	Atomic Scale Photodetection Enabled by a Memristive Junction. <i>ACS Nano</i> , 2018 , 12, 6706-6713	16.7	24	
349	Multicolor Electrochromic Devices Based on Molecular Plasmonics. <i>ACS Nano</i> , 2017 , 11, 3254-3261	16.7	72	
348	Hot Hole Photoelectrochemistry on Au@SiO@Au Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2060-2067	6.4	110	
347	Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis. <i>Nano Letters</i> , 2017 , 17, 3710-3717	11.5	155	
346	Plasmonic Coupling of Multipolar Edge Modes and the Formation of Gap Modes. <i>ACS Photonics</i> , 2017 , 4, 1558-1565	6.3	22	
345	Nanophotonics-enabled solar membrane distillation for off-grid water purification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6936-6941	11.5	227	
344	Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. <i>Nature Communications</i> , 2017 , 8, 27	17.4	220	
343	Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe. Nano Letters, 2017 , 17, 3809-3814	11.5	178	
342	Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. Journal of Physical Chemistry Letters, 2017 , 8, 2681-2688	6.4	27	
341	Doped Silicon Nanocrystal Plasmonics. <i>ACS Photonics</i> , 2017 , 4, 963-970	6.3	37	
340	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381	16.7	714	
339	Optomechanics of Single Aluminum Nanodisks. <i>Nano Letters</i> , 2017 , 17, 2575-2583	11.5	42	
338	Transition-Metal Decorated Aluminum Nanocrystals. <i>ACS Nano</i> , 2017 , 11, 10281-10288	16.7	64	
337	Vibrational coupling in plasmonic molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11621-11626	11.5	37	
336	Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. <i>Nano Letters</i> , 2017 , 17, 6034-6039	11.5	175	
335	Theory, Simulation, and Computation in Nanoscience and Nanotechnology. <i>ACS Nano</i> , 2017 , 11, 6505-656	06 .7	7	

Quantifying Remote Heating from Propagating Surface Plasmon Polaritons. Nano Letters, 2017, 17, 5646-665210 334 Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. 11.5 131 333 Nano Letters, 2017, 17, 5768-5774 Oblique Colloidal Lithography for the Fabrication of Nonconcentric Features. ACS Nano, 2017, 11, 6594-6604 11 332 How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017, 11, 7321-733516.7 331 54 Enhancing T magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 11.5 62 330 114, 6960-6965 Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. 329 11.5 133 Nano Letters, 2017, 17, 5071-5077 328 Plasmonic colour generation. Nature Reviews Materials, 2017, 2, 73.3 435 Combining Solar Steam Processing and Solar Distillation for Fully Off-Grid Production of Cellulosic 327 20.1 52 Bioethanol. ACS Energy Letters, 2017, 2, 8-13 Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. 326 66 11.5 Nano Letters, 2016, 16, 5183-90 Heterometallic antenna-reactor complexes for photocatalysis. Proceedings of the National Academy 325 11.5 272 of Sciences of the United States of America, 2016, 113, 8916-20 Photoinduced Force Mapping of Plasmonic Nanostructures. Nano Letters, 2016, 16, 7942-7949 324 11.5 50 Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature 323 17.4 453 Communications, 2016, 7, 11495 Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation. Nano Letters, 2016 322 11.5 234 , 16, 1478-84 High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. ACS Nano, 2016, 321 131 10, 1108-17 Asymmetric Aluminum Antennas for Self-Calibrating Surface-Enhanced Infrared Absorption 320 6.3 89 Spectroscopy. ACS Photonics, 2016, 3, 354-360 Electron Energy-Loss Spectroscopy of Multipolar Edge and Cavity Modes in Silver Nanosquares. ACS 6.3 38 319 Photonics, 2016, 3, 428-433 Laser-Induced Spectral Hole-Burning through a Broadband Distribution of Au Nanorods. Journal of 318 3.8 21 Physical Chemistry C, 2016, 120, 20518-20524 Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary 28 317 Resistance. ACS Nano, 2016, 10, 6972-9

(2015-2016)

316	Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles. <i>ACS Nano</i> , 2016 , 10, 4835-46	16.7	25
315	Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source. <i>Nano Letters</i> , 2016 , 16, 3373-8	11.5	35
314	Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. <i>ACS Nano</i> , 2016 , 10, 6180-8	16.7	64
313	Molecular Plasmon-Phonon Coupling. <i>Nano Letters</i> , 2016 , 16, 6390-6395	11.5	12
312	Absorption Spectroscopy of an Individual Fano Cluster. <i>Nano Letters</i> , 2016 , 16, 6497-6503	11.5	32
311	Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts. <i>Nano Letters</i> , 2016 , 16, 6677-6682	11.5	154
310	Molecular Plasmonics. <i>Nano Letters</i> , 2015 , 15, 6208-14	11.5	66
309	High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps. <i>ACS Nano</i> , 2015 , 9, 9331-9	16.7	46
308	Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. <i>Nature Communications</i> , 2015 , 6, 7797	17.4	252
307	Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. <i>ACS Nano</i> , 2015 , 9, 5968-75	16.7	73
306	Aluminum nanocrystals. <i>Nano Letters</i> , 2015 , 15, 2751-5	11.5	144
305	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. <i>Nature Communications</i> , 2015 , 6, 7022	17.4	48
304	Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. ACS Nano, 2015, 9, 10628-3	6 16.7	172
303	Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer. <i>Nano Letters</i> , 2015 , 15, 6419-28	11.5	106
302	Nanoparticle-Mediated, Light-Induced Phase Separations. <i>Nano Letters</i> , 2015 , 15, 7880-5	11.5	93
301	Active Light Control of the MoS2 Monolayer Exciton Binding Energy. ACS Nano, 2015, 9, 10158-64	16.7	153
300	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. <i>Nano Letters</i> , 2015 , 15, 6946-51	11.5	125
299	A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. <i>Faraday Discussions</i> , 2015 , 178, 151-83	3.6	119

298	Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. <i>ACS Nano</i> , 2015 , 9, 6428-35	16.7	96
297	From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. <i>Science Advances</i> , 2015 , 1, e1500988	14.3	127
296	Active quantum plasmonics. <i>Science Advances</i> , 2015 , 1, e1501095	14.3	55
295	Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). <i>Nano Letters</i> , 2015 , 15, 1272-80	11.5	182
294	Plasmon-induced hot carrier science and technology. <i>Nature Nanotechnology</i> , 2015 , 10, 25-34	28.7	1903
293	The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics, 2015 , 2, 295-305	6.3	89
292	Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package. <i>ACS Photonics</i> , 2015 , 2, 369-375	6.3	54
291	Standing wave plasmon modes interact in an antenna-coupled nanowire. <i>Nano Letters</i> , 2015 , 15, 1324-3	30 11.5	18
290	Applied physics. Molecular tuning of quantum plasmon resonances. <i>Science</i> , 2014 , 343, 1444-5	33.3	15
289	Fluorescence enhancement of molecules inside a gold nanomatryoshka. <i>Nano Letters</i> , 2014 , 14, 2926-3	311.5	163
288	Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires. <i>ACS Nano</i> , 2014 , 8, 572-80	16.7	34
287	Active tunable absorption enhancement with graphene nanodisk arrays. <i>Nano Letters</i> , 2014 , 14, 299-30	411.5	477
286	Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 370-4	6.4	146
285	Aluminum for plasmonics. ACS Nano, 2014 , 8, 834-40	16.7	827
284	Theory of Quantum Plasmon Resonances in Doped Semiconductor Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16035-16042	3.8	54
283	Impurity-induced plasmon damping in individual cobalt-doped hollow Au nanoshells. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 14056-61	3.4	19
282	Nanoparticles heat through light localization. <i>Nano Letters</i> , 2014 , 14, 4640-5	11.5	320
281	Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires. <i>Nano Letters</i> , 2014 , 14, 3628-33	11.5	30

(2013-2014)

280	Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. <i>Advanced Materials</i> , 2014 , 26, 6467-71	24	429
279	Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. <i>Journal of the American Chemical Society</i> , 2014 , 136, 64-7	16.4	375
278	Color-selective and CMOS-compatible photodetection based on aluminum plasmonics. <i>Advanced Materials</i> , 2014 , 26, 6318-23	24	144
277	Vivid, full-color aluminum plasmonic pixels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 14348-53	11.5	243
276	Fabrication of Split-Rings via Stretchable Colloidal Lithography. ACS Photonics, 2014, 1, 127-134	6.3	11
275	Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. <i>Nature Communications</i> , 2014 , 5, 4424	17.4	201
274	Plasmon-induced hot carriers in metallic nanoparticles. <i>ACS Nano</i> , 2014 , 8, 7630-8	16.7	499
273	The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells. ACS Nano, 2014 , 8, 3222	-36.7	131
272	Tunable plasmonic nanoparticles with catalytically active high-index facets. <i>Nano Letters</i> , 2014 , 14, 367	4 -18:2 5	131
271	Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. <i>Physical Review Letters</i> , 2013 , 110, 263901	7.4	173
270	Three-dimensional plasmonic nanoclusters. <i>Nano Letters</i> , 2013 , 13, 4399-403	11.5	148
269	Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11677-81	11.5	352
268	Quantum plasmonics: optical properties of a nanomatryushka. <i>Nano Letters</i> , 2013 , 13, 5873-9	11.5	79
267	Plasmonics: The dark side of the ring. <i>Nature Nanotechnology</i> , 2013 , 8, 76-7	28.7	18
266	Gold nanobelts as high confinement plasmonic waveguides. <i>Nano Letters</i> , 2013 , 13, 6256-61	11.5	25
265	Individual nanoantennas loaded with three-dimensional optical nanocircuits. <i>Nano Letters</i> , 2013 , 13, 14	2 1 71.5	94
264	Plasmonic radiance: probing structure at the figstrfh scale with visible light. <i>Nano Letters</i> , 2013 , 13, 497-503	11.5	94
263	Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. <i>Nano Letters</i> , 2013 , 13, 240)-7 1.5	1091

262	Solar vapor generation enabled by nanoparticles. ACS Nano, 2013, 7, 42-9	16.7	882
261	Gated tunability and hybridization of localized plasmons in nanostructured graphene. <i>ACS Nano</i> , 2013 , 7, 2388-95	16.7	534
260	Embedding plasmonic nanostructure diodes enhances hot electron emission. <i>Nano Letters</i> , 2013 , 13, 1687-92	11.5	244
259	Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. <i>Nano Letters</i> , 2013 , 13, 1736-42	11.5	346
258	Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. <i>Nature Communications</i> , 2013 , 4, 1643	17.4	425
257	Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1352-7	6.4	20
256	Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3688-95	16.4	175
255	Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. <i>Nano Letters</i> , 2013 , 13, 3281-6	11.5	365
254	Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano, 2013, 7, 4527-36	16.7	264
253	Quantum junction plasmons in graphene dimers. <i>Laser and Photonics Reviews</i> , 2013 , 7, 297-302	8.3	14
253 252	Quantum junction plasmons in graphene dimers. <i>Laser and Photonics Reviews</i> , 2013 , 7, 297-302 Tunable molecular plasmons in polycyclic aromatic hydrocarbons. <i>ACS Nano</i> , 2013 , 7, 3635-43	8.3	
252	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. <i>ACS Nano</i> , 2013 , 7, 3635-43 Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface.	16.7	89
252 251	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. <i>ACS Nano</i> , 2013 , 7, 3635-43 Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface. <i>Nano Letters</i> , 2013 , 13, 5997-6001 Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. <i>Optics Express</i> ,	16.7	89
252 251 250	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. <i>ACS Nano</i> , 2013 , 7, 3635-43 Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface. <i>Nano Letters</i> , 2013 , 13, 5997-6001 Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. <i>Optics Express</i> , 2013 , 21, 27306-25 Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing.	16.7 11.5	89 26 127
252 251 250 249	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. <i>ACS Nano</i> , 2013 , 7, 3635-43 Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface. <i>Nano Letters</i> , 2013 , 13, 5997-6001 Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. <i>Optics Express</i> , 2013 , 21, 27306-25 Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 9215-9 Bridging quantum and classical plasmonics with a quantum-corrected model. <i>Nature</i>	16.7 11.5 3.3	89 26 127 180
252 251 250 249 248	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. <i>ACS Nano</i> , 2013 , 7, 3635-43 Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface. <i>Nano Letters</i> , 2013 , 13, 5997-6001 Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. <i>Optics Express</i> , 2013 , 21, 27306-25 Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 9215-9 Bridging quantum and classical plasmonics with a quantum-corrected model. <i>Nature Communications</i> , 2012 , 3, 825	16.7 11.5 3.3 11.5	89 26 127 180

244	A plasmonic Fano switch. <i>Nano Letters</i> , 2012 , 12, 4977-82	11.5	291
243	Tunable plasmon resonances in a metallic nanotip-film system. <i>Nanoscale</i> , 2012 , 4, 5931-5	7.7	19
242	Plasmon-induced doping of graphene. ACS Nano, 2012, 6, 10222-8	16.7	317
241	Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. <i>Nano Letters</i> , 2012 , 12, 10	5 <u>8163</u> 2	187
240	Plasmonic Materials: A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University (Adv. Mater. 36/2012). <i>Advanced Materials</i> , 2012 , 24, 4774-4774	24	4
239	Aluminum plasmonic nanoantennas. <i>Nano Letters</i> , 2012 , 12, 6000-4	11.5	430
238	Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. <i>Nano Letters</i> , 2012 , 12, 1333-9	11.5	378
237	Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. <i>Nano Letters</i> , 2012 , 12, 1660-7	11.5	392
236	Plasmon blockade in nanostructured graphene. ACS Nano, 2012, 6, 1724-31	16.7	56
235	Plasmonic mode engineering with templated self-assembled nanoclusters. <i>Nano Letters</i> , 2012 , 12, 5318	8 -24 .5	97
234	Magnetic plasmon formation and propagation in artificial aromatic molecules. <i>Nano Letters</i> , 2012 , 12, 364-9	11.5	107
233	Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. <i>Nano Letters</i> , 2012 , 12, 4881-8	11.5	56
232	Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy. <i>Nano Letters</i> , 2012 , 12, 2817-21	11.5	52
231	Manipulating magnetic plasmon propagation in metallic nanocluster networks. ACS Nano, 2012, 6, 5482	2-8 6.7	85
230	A plethora of plasmonics from the laboratory for nanophotonics at Rice University. <i>Advanced Materials</i> , 2012 , 24, 4842-77, 4774	24	76
229	Graphene-antenna sandwich photodetector. <i>Nano Letters</i> , 2012 , 12, 3808-13	11.5	540
228	Tunable wide-angle plasmonic perfect absorber at visible frequencies. <i>Physical Review B</i> , 2012 , 85,	3.3	114
227	Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances. <i>Physical Review B</i> , 2012 , 86,	3.3	28

226	Virtual issue on plasmonics. ACS Nano, 2011, 5, 4245-8	16.7	13
225	DNA-enabled self-assembly of plasmonic nanoclusters. <i>Nano Letters</i> , 2011 , 11, 4859-64	11.5	128
224	Real-space mapping of Fano interference in plasmonic metamolecules. <i>Nano Letters</i> , 2011 , 11, 3922-6	11.5	117
223	Plasmons in strongly coupled metallic nanostructures. <i>Chemical Reviews</i> , 2011 , 111, 3913-61	68.1	2348
222	On the energy shift between near-field and far-field peak intensities in localized plasmon systems. <i>Nano Letters</i> , 2011 , 11, 1280-3	11.5	284
221	A tunable plasmon resonance in gold nanobelts. <i>Nano Letters</i> , 2011 , 11, 5034-7	11.5	55
220	Quantum plexcitonics: strongly interacting plasmons and excitons. <i>Nano Letters</i> , 2011 , 11, 2318-23	11.5	313
219	Plasmonic focusing in symmetry broken nanocorrals. <i>Nano Letters</i> , 2011 , 11, 893-7	11.5	124
218	Removing a wedge from a metallic nanodisk reveals a fano resonance. <i>Nano Letters</i> , 2011 , 11, 4475-9	11.5	181
217	Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. <i>Nano Letters</i> , 2011 , 11, 471-5	11.5	226
216	Angle- and spectral-dependent light scattering from plasmonic nanocups. ACS Nano, 2011 , 5, 7254-62	16.7	85
215	Photodetection with active optical antennas. <i>Science</i> , 2011 , 332, 702-4	33.3	1465
214	Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties. <i>Chemical Science</i> , 2011 , 2, 2392	9.4	35
213	Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. <i>Nano Letters</i> , 2011 , 11, 1657-63	11.5	556
212	Bethe-hole polarization analyser for the magnetic vector of light. <i>Nature Communications</i> , 2011 , 2, 451	17.4	71
211	Coupling of nanoparticle plasmons with molecular linkers 2011,		3
210	Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12247-55	16.4	299
209	Chiral surface plasmon polaritons on metallic nanowires. <i>Physical Review Letters</i> , 2011 , 107, 096801	7.4	191

208	Unidirectional broadband light emission from supported plasmonic nanowires. <i>Nano Letters</i> , 2011 , 11, 706-11	11.5	186
207	Coherent modulation of propagating plasmons in silver-nanowire-based structures. Small, 2011, 7, 593-	-611	67
206	Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. <i>Journal of Chemical Physics</i> , 2011 , 134, 074701	3.9	80
205	The Fano resonance in plasmonic nanostructures and metamaterials. <i>Nature Materials</i> , 2010 , 9, 707-15	27	2834
204	Optimum areal coverage for perfect transmission in a periodic metal hole array. <i>Applied Physics Letters</i> , 2010 , 97, 261112	3.4	9
203	Optical spectroscopy of conductive junctions in plasmonic cavities. <i>Nano Letters</i> , 2010 , 10, 3090-5	11.5	187
202	A single molecule immunoassay by localized surface plasmon resonance. <i>Nanotechnology</i> , 2010 , 21, 255	550B	140
2 01	Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substratesâ[] <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7302-7307	3.8	102
200	Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 2010, 4, 819-32	16.7	375
199	Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. <i>ACS Nano</i> , 2010 , 4, 1664-70	16.7	344
198	Effect of a proximal substrate on plasmon propagation in silver nanowires. <i>Physical Review B</i> , 2010 , 82,	3.3	60
197	Fano-like interference in self-assembled plasmonic quadrumer clusters. <i>Nano Letters</i> , 2010 , 10, 4680-5	11.5	314
196	Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires. <i>Nano Letters</i> , 2010 , 10, 3482-5	11.5	66
195	Multipolar plasmon resonances in individual ag nanorice. ACS Nano, 2010 , 4, 2649-54	16.7	125
194	Perforated semishells: far-field directional control and optical frequency magnetic response. <i>ACS Nano</i> , 2010 , 4, 2701-12	16.7	41
193	Nanosphere-in-a-Nanoshell: A Simple Nanomatryushkaâll <i>Journal of Physical Chemistry C</i> , 2010 , 114, 737	8378383	3 197
192	Fanoshells: nanoparticles with built-in Fano resonances. <i>Nano Letters</i> , 2010 , 10, 2694-701	11.5	271
191	Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. <i>Nano Letters</i> , 2010 , 10, 3184-9	11.5	538

190	Branched silver nanowires as controllable plasmon routers. <i>Nano Letters</i> , 2010 , 10, 1950-4	11.5	237
189	Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano, 2010, 4, 6639-50	16.7	113
188	Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. <i>ACS Nano</i> , 2010 , 4, 4657-66	16.7	186
187	Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano, 2010, 4, 5269-76	516.7	207
186	Self-assembled plasmonic nanoparticle clusters. <i>Science</i> , 2010 , 328, 1135-8	33.3	1223
185	Correlation between incident and emission polarization in nanowire surface plasmon waveguides. <i>Nano Letters</i> , 2010 , 10, 1831-5	11.5	122
184	Fano resonances in planar silver nanosphere clusters. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 100, 333-339	2.6	119
183	Plasmon hybridization for real metals. <i>Science Bulletin</i> , 2010 , 55, 2629-2634		12
182	Antibonding plasmon mode coupling of an individual hole in a thin metallic film. <i>Physical Review B</i> , 2009 , 80,	3.3	11
181	Optical Properties of Metallic Nanoparticle Arrays for Oblique Excitation Using the Multiple Unit Cell Method. <i>Journal of Computational and Theoretical Nanoscience</i> , 2009 , 6, 2031-2039	0.3	2
180	On the nature of the bonding and antibonding metallic film and nanoshell plasmons. <i>Chemical Physics Letters</i> , 2009 , 472, 228-231	2.5	33
179	Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. <i>Nano Letters</i> , 2009 , 9, 2188-92	11.5	372
178	Fano resonances in plasmonic nanoparticle aggregates. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 4028	-3.\$	273
177	Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. <i>ACS Nano</i> , 2009 , 3, 3015-22	16.7	286
176	Directional light emission from propagating surface plasmons of silver nanowires. <i>Nano Letters</i> , 2009 , 9, 4383-6	11.5	122
175	Terahertz transmission properties of an individual slit in a thin metallic plate. <i>Optics Express</i> , 2009 , 17, 12660-7	3.3	34
174	Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. <i>Nano Letters</i> , 2009 , 9, 2049-53	11.5	186
173	Quantum description of the plasmon resonances of a nanoparticle dimer. <i>Nano Letters</i> , 2009 , 9, 887-91	11.5	688

172	The ring: a leitmotif in plasmonics. ACS Nano, 2009, 3, 488-92	16.7	93
171	Fano resonances in individual coherent plasmonic nanocavities. <i>Nano Letters</i> , 2009 , 9, 1663-7	11.5	594
170	Magnetic-plasmonic core-shell nanoparticles. ACS Nano, 2009, 3, 1379-88	16.7	303
169	Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. <i>ACS Nano</i> , 2009 , 3, 643-52	16.7	416
168	Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. <i>Nano Letters</i> , 2008 , 8, 3983-8	11.5	847
167	Optical properties of a nanosized hole in a thin metallic film. ACS Nano, 2008, 2, 25-32	16.7	126
166	Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. <i>ACS Nano</i> , 2008 , 2, 707-18	16.7	665
165	Plasmonic properties of a metallic torus. <i>Journal of Chemical Physics</i> , 2008 , 129, 084706	3.9	31
164	Simultaneous measurements of electronic conduction and Raman response in molecular junctions. <i>Nano Letters</i> , 2008 , 8, 919-24	11.5	256
163	Close encounters between two nanoshells. <i>Nano Letters</i> , 2008 , 8, 1212-8	11.5	421
162	Plasmon hybridization in nanorod dimers. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 93, 209-216	1.9	107
161	Plasmon hybridization in stacked double gold nanorings with reduced symmetry. <i>Small</i> , 2008 , 4, 1630-4	11	15
160	Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. <i>Chemical Physics Letters</i> , 2008 , 452, 115-119	2.5	179
159	Shedding light on dark plasmons in gold nanorings. <i>Chemical Physics Letters</i> , 2008 , 458, 262-266	2.5	193
158	Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. <i>Nano Letters</i> , 2008 , 8, 3481-7	11.5	457
157	Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. <i>Nano Letters</i> , 2008 , 8, 2497-502	11.5	245
156	Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. <i>Nano Letters</i> , 2007 , 7, 1396	-409	280
155	Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. <i>Physical Review B</i> , 2007 , 76,	3.3	115

154	Prediction of structure-dependent charge transfer rates for a Li atom outside a Si(0 0 1) surface. <i>Surface Science</i> , 2007 , 601, L29-L33	1.8	1
153	Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. <i>Chemical Physics Letters</i> , 2007 , 446, 115-118	2.5	164
152	Plasmon-enhanced terahertz near-field microscopy 2007 ,		2
151	Plasmonic nanoclusters: a path towards negative-index metafluids. <i>Optics Express</i> , 2007 , 15, 14129-45	3.3	130
150	Nanoparticle-mediated coupling of light into a nanowire. <i>Nano Letters</i> , 2007 , 7, 2346-50	11.5	191
149	Plasmon resonances of a gold nanostar. <i>Nano Letters</i> , 2007 , 7, 729-32	11.5	732
148	Plasmon modes of curvilinear metallic core/shell particles. <i>Journal of Chemical Physics</i> , 2007 , 126, 1447	0§ .9	37
147	Plasmonic nanostructures: artificial molecules. <i>Accounts of Chemical Research</i> , 2007 , 40, 53-62	24.3	580
146	Plasmonic interactions between a metallic nanoshell and a thin metallic film. <i>Physical Review B</i> , 2007 , 76,	3.3	66
145	Mechanism of enhanced broadening of the ionization level of Li outside transition metal surfaces. <i>Physical Review B</i> , 2006 , 74,	3.3	17
144	Plasmonic coupling between a metallic nanosphere and a thin metallic wire. <i>Applied Physics Letters</i> , 2006 , 89, 103101	3.4	55
143	Transient current in a quantum dot subject to a change in coupling to its leads. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 8995-9006	1.8	15
142	Plasmon hybridization in nanoshells with a nonconcentric core. <i>Journal of Chemical Physics</i> , 2006 , 125, 124708	3.9	70
141	Plasmon modes of nanosphere trimers and quadrumers. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 123	03. ₄ 10	220
140	Symmetry breaking in individual plasmonic nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10856-60	11.5	246
139	Influence of surface band gaps on the lifetimes of charge transfer states. <i>Surface Science</i> , 2006 , 600, L291-L295	1.8	16
138	Nanorice: a hybrid plasmonic nanostructure. <i>Nano Letters</i> , 2006 , 6, 827-32	11.5	661
137	Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. <i>Applied Physics B: Lasers and Optics</i> , 2006 , 84, 35-41	1.9	76

(2003-2005)

136	Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. Journal of Physical Chemistry B, 2005 , 109, 11083-7	3.4	148
135	Finite-difference time-domain studies of the optical properties of nanoshell dimers. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10042-51	3.4	197
134	Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. <i>Nano Letters</i> , 2005 , 5, 1569-74	11.5	978
133	Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. <i>Nano Letters</i> , 2005 , 5, 2009-13	11.5	140
132	Plasmon hybridization in nanoshell dimers. <i>Journal of Chemical Physics</i> , 2005 , 123, 24701	3.9	84
131	Transient currents and universal time scales for a fully time-dependent quantum dot in the Kondo regime. <i>Physical Review B</i> , 2005 , 71,	3.3	34
130	Optical properties of a spherical two-dimensional electron gas in a uniform magnetic field. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 8233-8241	1.8	6
129	First principles resonance widths for Li near an Al(001) surface: predictions of scattered ion neutralization probabilities. <i>Journal of Chemical Physics</i> , 2004 , 121, 3751-5	3.9	25
128	Plasmon Hybridization in Nanoparticle Dimers. <i>Nano Letters</i> , 2004 , 4, 899-903	11.5	1357
127	Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. <i>Chemical Physics Letters</i> , 2004 , 399, 167-171	2.5	173
126	Plasmon hybridization in spherical nanoparticles. <i>Journal of Chemical Physics</i> , 2004 , 120, 5444-54	3.9	440
125	Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17740-17747	3.4	273
124	Plasmon Hybridization in Nanoparticles near Metallic Surfaces. <i>Nano Letters</i> , 2004 , 4, 2209-2213	11.5	282
123	Electronic structure and optical properties of metallic nanoshells 2003 , 5221, 151		4
122	A hybridization model for the plasmon response of complex nanostructures. <i>Science</i> , 2003 , 302, 419-22	33.3	3073
121	On the Kohn-Sham Equations with Periodic Background Potentials. <i>Journal of Statistical Physics</i> , 2003 , 111, 967-992	1.5	14
120	Behavior of Rydberg atoms at surfaces: energy level shifts and ionization. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2003 , 203, 69-75	1.2	24
119	Effects of dielectric screening on the optical properties of metallic nanoshells. <i>Chemical Physics Letters</i> , 2003 , 368, 94-101	2.5	105

118	Electronic Structure and Optical Properties of Gold Nanoshells. <i>Nano Letters</i> , 2003 , 3, 1411-1415	11.5	226
117	Structural Tunability of the Plasmon Resonances in Metallic Nanoshells. <i>Nano Letters</i> , 2003 , 3, 543-547	11.5	218
116	Ionization of xenon Rydberg atoms at surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 193, 403-407	1.2	14
115	The dynamics of He+ ion neutralization at metal surfaces: spin dependent studies. <i>Nuclear</i> Instruments & Methods in Physics Research B, 2002 , 193, 656-660	1.2	6
114	Electronic structure and polarizability of metallic nanoshells. Chemical Physics Letters, 2002, 352, 140-14	46 .5	61
113	The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. <i>Chemical Physics Letters</i> , 2002 , 360, 325-332	2.5	147
112	Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides. Journal of Physical Chemistry B, 2002 , 106, 5609-5612	3.4	43
111	Avoided Crossings in the Interaction of a Xe Rydberg Atom with a Metal Surfaceâ\(\textit{Journal of Physical Chemistry B, \textit{2002}, 106, 8338-8341}\)	3.4	15
110	Effect of a surface Al adatom on the resonant charge transfer between an Hâlion and an Al(111) surface. <i>Surface Science</i> , 2002 , 506, 145-160	1.8	5
109	Charge-transfer cross sections for radiative charge transfer in Na+H+ and K+H+ collisions at very low energies. <i>Physical Review A</i> , 2002 , 66,	2.6	13
108	Optical properties of metallic nanoshells 2002 , 4810, 91		2
107	Simple master equation for the description of charge transfer in atom®surface scattering. <i>Progress in Surface Science</i> , 2001 , 67, 155-165	6.6	5
106	Exchange and correlations effects in small metallic nanoshells. Chemical Physics Letters, 2001, 349, 153-	1269	20
105	Hartree approximation III: Symmetry breaking. <i>Journal of Mathematical Physics</i> , 2001 , 42, 3424-3438	1.2	3
104	Hartree approximation II: The thermodynamic limit. <i>Journal of Mathematical Physics</i> , 2001 , 42, 3407-342	23.2	1
103	Electron tunneling rates between an atom and a corrugated surface. <i>Physical Review B</i> , 2001 , 64,	3.3	16
102	Hartree approximation I: The fixed point approach. <i>Journal of Mathematical Physics</i> , 2001 , 42, 3390-340	61.2	6
101	Charge-transfer cross sections in collisions of ground-state Na atoms with H+ at low-eV collision energies. <i>Physical Review A</i> , 2001 , 63,	2.6	8

100	Adsorbate-Induced Quenching of Hot Electrons in Gold CoreâBhell Nanoparticles. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9913-9917	3.4	39
99	Surface structure and electron density dependence of scattered Ne+ ion fractions from the Si(100)-(21) surface. <i>Surface Science</i> , 2001 , 470, 255-264	1.8	4
98	Doping dependence of electronic charge transfer on Si(100). Surface Science, 2001, 489, L561-L567	1.8	8
97	Electron- and photon-stimulated desorption of atomic hydrogen from radiation-modified alkali halide surfaces. <i>Physical Review B</i> , 2000 , 62, 10535-10543	3.3	12
96	Kondo physics in the single-electron transistor with ac driving. <i>Physical Review B</i> , 2000 , 61, 2146-2150	3.3	57
95	Kondo time scales for quantum dots: Response to pulsed bias potentials. <i>Physical Review B</i> , 2000 , 61, R13341-R13344	3.3	50
94	The effect of water on the Fe(3+)/Fe(2+) reduction potential of heme. <i>Biochemical and Biophysical Research Communications</i> , 2000 , 268, 683-7	3.4	10
93	Energies and lifetimes of xenon Rydberg states near a metal surface. Surface Science, 2000, 448, L193-L	.1 <u>9</u> 9	13
92	Ionization of xenon Rydberg atoms at a metal surface. <i>Physical Review Letters</i> , 2000 , 85, 5444-7	7.4	71
91	Quadrature integration for orthogonal wavelet systems. <i>Journal of Chemical Physics</i> , 1999 , 110, 8309-8	33.7	31
90	Spin-dependent studies of the dynamics of He+ ion neutralization at a Au(100) surface. <i>Physical Review B</i> , 1999 , 60, 9082-9089	3.3	29
89	Trajectory dependence of scattered Ne+ and recoiled Sâllon fractions from the Cd- and S-terminated CdS{0001} surfaces. <i>Journal of Chemical Physics</i> , 1999 , 110, 8139-8149	3.9	6
88	Effect of parallel velocity on the formation of a Kondo resonance in the atom-surface interaction. <i>Physical Review B</i> , 1999 , 59, 13322-13327	3.3	7
87	Charge-transfer processes in collisions of H+ ions with phosphorus atoms at low energies. <i>Physical Review A</i> , 1999 , 59, 405-411	2.6	4
86	Resonant charge transfer process in ionâthetal surface collisions: effect of the presence of vacancies on the surface. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1999 , 157, 55-60	1.2	7
85	Use of spin-labelling techniques to probe the dynamics of He+ ion neutralization at clean metal surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1999 , 157, 68-74	1.2	7
84	Dynamics of Rydberg atoms near metal surfaces in the presence of an electric field. <i>Surface Science</i> , 1999 , 423, L271-L276	1.8	19
83	How Long Does It Take for the Kondo Effect to Develop?. <i>Physical Review Letters</i> , 1999 , 83, 808-811	7.4	116

82	A density-functional study of the effects of an external electric field on admoleculeaBurface systems. <i>Surface Science</i> , 1998 , 401, 47-55	1.8	12
81	Multielectron effects in the interaction of Fâllons with Ag(110). Surface Science, 1998 , 415, L1027-L1031	1.8	37
80	Low-energy dissociative electron attachment to CH2Br2, CHClBr2, and CCl3Br: Intermediate lifetimes and decay energetics. <i>Journal of Chemical Physics</i> , 1998 , 109, 8829-8835	3.9	15
79	Charge transfer in collisions of C2+ ions with H atoms at low-keV energies: A possible bound state of CH2+. <i>Physical Review A</i> , 1998 , 57, 4483-4489	2.6	12
78	Surface Structure and Electron Density Dependence of Scattered Ne+ Ion Fractions from Cd- and S-Terminated CdS{0001} Surfaces. <i>Physical Review Letters</i> , 1998 , 81, 5153-5156	7.4	15
77	Low-energy dissociative electron attachment to CFCl3, CF2Br2, and 1,1,1- and 1,1,2-C2Cl3F3: Intermediate lifetimes and decay energetics. <i>Journal of Chemical Physics</i> , 1997 , 106, 9594-9601	3.9	19
76	Low energy (. <i>Journal of Chemical Physics</i> , 1997 , 106, 2801-2810	3.9	13
75	The effects of an external electric field on the adatom-surface bond: H and Al adsorbed on Si(111). <i>Surface Science</i> , 1997 , 372, 9-20	1.8	35
74	Influence of the atomic polarization potential on the tunneling rates of electrons between atoms and surfaces. <i>Surface Science</i> , 1997 , 371, L235-L241	1.8	5
73	Interaction of Rydberg atoms with surfaces: Electron tunneling processes. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 300-304	1.2	18
72	Electron tunneling rates between atoms and surfaces covered by dielectric films. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 305-309	1.2	7
71	Charge transfer in collisions of an H+ ion with a ground-state Mg atom at low keV collision energies. <i>Chemical Physics Letters</i> , 1997 , 264, 51-56	2.5	9
70	Disintegration of finite carbon chains in electric fields. <i>Chemical Physics Letters</i> , 1997 , 264, 345-350	2.5	18
69	Excimer Model for Photoluminescence in Single-Crystal C60. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 2854-2861		18
68	Breaking individual chemical bonds via STM-induced excitations. <i>Surface Science</i> , 1996 , 363, 368-377	1.8	161
67	A density-functional study of cluster reactivity. III. NH3 on a free Ga5As+5 cationic cluster. <i>Journal of Chemical Physics</i> , 1996 , 104, 1477-1482	3.9	2
66	Wavelet based in eigenvalue problems in quantum mechanics. <i>Chemical Physics Letters</i> , 1996 , 250, 485-4	 4 <u>9</u> . 4	36
65	On the binding of electrons to CS2: Possible role of quadrupole-bound states. <i>Chemical Physics Letters</i> , 1996 , 253, 8-12	2.5	31

64	Recent developements in charge-transfer theory. <i>Progress in Surface Science</i> , 1996 , 53, 265-272	6.6	1
63	Carbon atomic chains in strong electric fields. <i>Physical Review B</i> , 1996 , 54, 16659-16662	3.3	20
62	Interaction of Rydberg atoms with a metal surface in the presence of an external electric field. <i>Physical Review B</i> , 1996 , 53, 8083-8089	3.3	32
61	Probing the Highly Correlated Mixed-Valent State via Charge Transfer with Atoms Moving Out from a Surface. <i>Physical Review Letters</i> , 1996 , 77, 948-951	7.4	29
60	Energies and lifetimes of atomic Rydberg states near metal surfaces. <i>Physical Review B</i> , 1996 , 53, 4125-	43.32	46
59	Non-adiabatic effects in charge transfer caused by electron correlation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 100, 260-266	1.2	2
58	Spin-dependent studies of the dynamics of He(23S) atom deexcitation at surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 100, 245-252	1.2	8
57	Unraveling nanotubes: field emission from an atomic wire. <i>Science</i> , 1995 , 269, 1550-3	33.3	1381
56	Photoelectron spectroscopy of transition-metal clusters: Correlation of valence electronic structure to reactivity. <i>Physical Review B</i> , 1995 , 51, 4668-4671	3.3	80
55	Nonadiabatic effects in charge transfer in atom-surface scattering. <i>Physical Review B</i> , 1995 , 52, 2988-29	9943	17
54	A density-functional study of cluster reactivity. II. Two ammonia molecules reacting with a free Ga5As5 cluster. <i>Journal of Chemical Physics</i> , 1995 , 102, 7484-7489	3.9	6
53	Fullerene nanotubes in electric fields. <i>Physical Review B</i> , 1995 , 52, 1429-1432	3.3	90
52	Photoluminescence spectra of epitaxial single crystal C60. <i>Chemical Physics Letters</i> , 1995 , 242, 592-597	2.5	15
51	Formation of long-lived C60âllons in Rydberg atom-C60 collisions. <i>Chemical Physics Letters</i> , 1995 , 244, 345-349	2.5	35
50	LIFETIMES OF ATOMIC STATES NEAR SURFACES. Advanced Series in Physical Chemistry, 1995, 347-368		3
49	A density-functional study of cluster reactivity: Ammonia reacting with a free Ga5As5 cluster. Journal of Chemical Physics, 1994 , 101, 8922-8927	3.9	8
48	Theoretical description of quasiresonant charge exchange in atom-surface collisions. <i>Physical Review B</i> , 1994 , 49, 13948-13965	3.3	27
47	Many-body theory for charge transfer in atom-surface collisions. <i>Physical Review B</i> , 1994 , 49, 13929-139	94573	71

46	Use of spin-labelling techniques to probe the dynamics of He(23 S) deexcitation at solid surfaces. <i>Zeitschrift Fil Physik D-Atoms Molecules and Clusters</i> , 1994 , 30, 239-243		5
45	An endohedral metallocarbohedrene C@Ti8C12. <i>Chemical Physics Letters</i> , 1994 , 224, 439-444	2.5	16
44	Theoretical study of O2 dissociation on copper and nickel clusters. <i>Surface Science</i> , 1994 , 320, 320-330	1.8	8
43	A density functional study of small alkali halide systems. <i>Journal of Chemical Physics</i> , 1994 , 101, 8903-89	9979	12
42	Anisotropic charge transfer between hydrogenic states and a metallic substrate. <i>Physical Review B</i> , 1993 , 47, 4142-4145	3.3	5
41	Electronic structure of the hollow-cage M8X12 clusters. <i>Journal of Chemical Physics</i> , 1993 , 99, 5301-530	53.9	41
40	Crystallographic dependence of recoiled Oion fractions from Ni{100}c(2 x 2)-O and NiO{100} surfaces. <i>Physical Review B</i> , 1993 , 47, 2369-2377	3.3	12
39	Intra-atomic correlation effects in charge transfer. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1993 , 78, 11-19	1.2	5
38	Electronic structure of small GaAs clusters. II. Journal of Chemical Physics, 1992, 97, 1858-1864	3.9	103
37	Lifetimes of negative-ion states near metal surfaces. <i>Physical Review B</i> , 1992 , 46, 2584-2590	3.3	77
36	Influence of coadsorbed potassium on the electron-stimulated desorption of F+, F-, and F* from PF3 on Ru(0001). <i>Physical Review B</i> , 1992 , 45, 14264-14272	3.3	17
35	Angular dependence of charge-transfer probabilities between O- and a Ni{100}-c(2 x 2)-O surface. <i>Physical Review Letters</i> , 1992 , 69, 188-191	7·4	33
34	Electronic structure of small GaAs clusters. <i>Journal of Chemical Physics</i> , 1991 , 94, 8015-8020	3.9	115
33	Electron-stimulated desorption of neutral lithium atoms from LiF due to excitation of surface excitons. <i>Physical Review B</i> , 1991 , 43, 6729-6732	3.3	40
32	Dynamics of metastable-atom deexcitation at metal surfaces. <i>Physical Review B</i> , 1991 , 44, 3246-3250	3.3	20
31	Energy shifts and broadening of atomic electron levels near impurity-covered metal surfaces. <i>Physical Review B</i> , 1991 , 44, 13681-13688	3.3	63
30	Derivation of a master equation for charge-transfer processes in atom-surface collisions. <i>Physical Review B</i> , 1991 , 43, 2541-2557	3.3	163
29	Interaction of hydrogen isotopes with metals: Deuterium trapped at lattice defects in palladium. Journal of Fusion Energy, 1990 , 9, 257-261	1.6	15

28	Vibrational autodetachment spectroscopy of Auâß: Image-charge-bound states of a gold ring. Journal of Chemical Physics, 1990 , 93, 7515-7518	3.9	55
27	Formation of excited hydrogen states in stimulated desorption from an alkali-promoted surface. Physical Review Letters, 1990 , 64, 942-945	7.4	48
26	Energy shifts and broadening of atomic levels near metal surfaces. <i>Physical Review B</i> , 1990 , 42, 5564-557	38 3	219
25	Vibrational properties of hydrogen chemisorbed on W(001) and Mo(001). <i>Surface Science</i> , 1990 , 234, 412-420	1.8	11
24	Determination of the structure of hydrogen on a W(211) surface. <i>Physical Review Letters</i> , 1989 , 63, 1408	7 14411	28
23	Dependence of alignment and orientation induced by grazing-incidence and beam-foil electron-exchange interactions on surface electronic structure. <i>Surface Science</i> , 1989 , 211-212, 198-206	1.8	2
22	Lifetimes of excited atoms near metal surfaces. <i>Surface Science</i> , 1989 , 211-212, 207-217	1.8	75
21	Time-of-flight scattering and recoiling spectrometry. III. The structure of hydrogen on the W(211) surface. <i>Physical Review B</i> , 1989 , 40, 10163-10180	3.3	31
20	Multiple deuterium occupancy of vacancies in Pd and related metals. <i>Physical Review B</i> , 1989 , 40, 1990-1	9 .92	89
19	Anisotropy of oxygen transport in YBa2Cu3O7: The role of the [, b,0] tunnels. <i>Physica C:</i> Superconductivity and Its Applications, 1988 , 153-155, 834-835	1.3	28
18	Extended Hčkel theory for ionic molecules and solids: An application to alkali halides. <i>Journal of Chemical Physics</i> , 1988 , 89, 4163-4169	3.9	26
17	Summary Abstract: The barrier to oxygen penetration on transition-metal oxide surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1988 , 6, 1081-1082	2.9	1
16	Energy shifts and broadening of excited hydrogen-atom levels in the vicinity of a metal surface. Physical Review Letters, 1988, 61, 990-993	7.4	196
15	Calculating Barriers to Oxygen Penetration on Metal Oxides with the Effective-Medium Theory. Materials Research Society Symposia Proceedings, 1988, 141, 279		
14	Summary Abstract: Theoretical picture of the adsorption of H2 on metal surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1987 , 5, 698-699	2.9	6
13	Calculation of the barrier for oxygen incorporation into metal and metal-oxide surfaces. <i>Physical Review B</i> , 1987 , 36, 4982-4989	3.3	20
12	Barrier to oxygen penetration on metal and oxide surfaces. <i>Physical Review B</i> , 1987 , 35, 9403-9406	3.3	20
11	Multiple hydrogen occupancy of vacancies in Fe. <i>Journal of Applied Physics</i> , 1987 , 61, 1788-1794	2.5	91

10	Physisorption interaction of H2 with simple metals. Surface Science Letters, 1986, 175, L753-L758		1
9	The Interaction of H2With Metal Surfaces. <i>Physica Scripta</i> , 1986 , T13, 155-160	2.6	35
8	Trends in hydrogen heats of solution and vacancy trapping energies in transition metals. <i>Journal of Physics F: Metal Physics</i> , 1986 , 16, 1161-1171		93
7	Theoretical examination of the trapping of ion-implanted hydrogen in metals. <i>Physical Review B</i> , 1986 , 33, 854-863	3.3	99
6	Indirect electronic interaction between hydrogen atoms adsorbed on metals. <i>Surface Science</i> , 1985 , 159, 443-465	1.8	55
5	Physisorption interaction of H2 with noble metals. <i>Surface Science</i> , 1985 , 152-153, 702-709	1.8	69
4	The interaction of helium with smooth metal surfaces. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 1141-1152		102
3	Hydrogen adsorption on metal surfaces. <i>Surface Science</i> , 1984 , 136, 59-81	1.8	373
2	Theoretical studies of molecular adsorption on metal surfaces. <i>International Journal of Quantum Chemistry</i> , 1983 , 23, 1083-1090	2.1	2
1	Potentials for atom-surface scattering. <i>Surface Science</i> , 1983 , 126, 675-680	1.8	