Peter Nordlander

List of Publications by Citations

Source: https://exaly.com/author-pdf/3177352/peter-nordlander-publications-by-citations.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63,909 126 248 405 g-index h-index citations papers 8.02 10.2 70,535 437 avg, IF L-index

ext. citations ext. papers

#	Paper	IF	Citations
405	A hybridization model for the plasmon response of complex nanostructures. <i>Science</i> , 2003 , 302, 419-22	33.3	3073
404	The Fano resonance in plasmonic nanostructures and metamaterials. <i>Nature Materials</i> , 2010 , 9, 707-15	27	2834
403	Plasmons in strongly coupled metallic nanostructures. <i>Chemical Reviews</i> , 2011 , 111, 3913-61	68.1	2348
402	Plasmon-induced hot carrier science and technology. <i>Nature Nanotechnology</i> , 2015 , 10, 25-34	28.7	1903
401	Photodetection with active optical antennas. <i>Science</i> , 2011 , 332, 702-4	33.3	1465
400	Unraveling nanotubes: field emission from an atomic wire. <i>Science</i> , 1995 , 269, 1550-3	33.3	1381
399	Plasmon Hybridization in Nanoparticle Dimers. <i>Nano Letters</i> , 2004 , 4, 899-903	11.5	1357
398	Self-assembled plasmonic nanoparticle clusters. <i>Science</i> , 2010 , 328, 1135-8	33.3	1223
397	Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. <i>Nano Letters</i> , 2013 , 13, 240	- 7 1.5	1091
396	Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. <i>Nano Letters</i> , 2005 , 5, 1569-74	11.5	978
395	Solar vapor generation enabled by nanoparticles. ACS Nano, 2013, 7, 42-9	16.7	882
394	Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. <i>Nano Letters</i> , 2008 , 8, 3983-8	11.5	847
393	Aluminum for plasmonics. ACS Nano, 2014, 8, 834-40	16.7	827
392	Plasmon resonances of a gold nanostar. <i>Nano Letters</i> , 2007 , 7, 729-32	11.5	732
391	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381	16.7	714
390	Quantum description of the plasmon resonances of a nanoparticle dimer. <i>Nano Letters</i> , 2009 , 9, 887-91	11.5	688
389	Bridging quantum and classical plasmonics with a quantum-corrected model. <i>Nature Communications</i> , 2012 , 3, 825	17.4	675

(2013-2008)

388	Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. <i>ACS Nano</i> , 2008 , 2, 707-18	16.7	665
387	Nanorice: a hybrid plasmonic nanostructure. <i>Nano Letters</i> , 2006 , 6, 827-32	11.5	661
386	Fano resonances in individual coherent plasmonic nanocavities. <i>Nano Letters</i> , 2009 , 9, 1663-7	11.5	594
385	Plasmonic nanostructures: artificial molecules. <i>Accounts of Chemical Research</i> , 2007 , 40, 53-62	24.3	580
384	Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. <i>Nano Letters</i> , 2011 , 11, 1657-63	11.5	556
383	Graphene-antenna sandwich photodetector. <i>Nano Letters</i> , 2012 , 12, 3808-13	11.5	540
382	Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. <i>Nano Letters</i> , 2010 , 10, 3184-9	11.5	538
381	Gated tunability and hybridization of localized plasmons in nanostructured graphene. <i>ACS Nano</i> , 2013 , 7, 2388-95	16.7	534
380	Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 2014, 8, 7630-8	16.7	499
379	Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. <i>Science</i> , 2018 , 362, 69-7	233.3	494
378	Active tunable absorption enhancement with graphene nanodisk arrays. <i>Nano Letters</i> , 2014 , 14, 299-30)4 11.5	477
377	Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. <i>Nano Letters</i> , 2008 , 8, 3481-7	11.5	457
376	Quantum mechanical effects in plasmonic structures with subnanometre gaps. <i>Nature Communications</i> , 2016 , 7, 11495	17.4	453
375	Plasmon hybridization in spherical nanoparticles. <i>Journal of Chemical Physics</i> , 2004 , 120, 5444-54	3.9	440
374	Plasmonic colour generation. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	435
373	Aluminum plasmonic nanoantennas. <i>Nano Letters</i> , 2012 , 12, 6000-4	11.5	430
372	Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. <i>Advanced Materials</i> , 2014 , 26, 6467-71	24	429
371	Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Communications, 2013, 4, 1643	17.4	425

370	Close encounters between two nanoshells. <i>Nano Letters</i> , 2008 , 8, 1212-8	11.5	421
369	Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. <i>ACS Nano</i> , 2009 , 3, 643-52	16.7	416
368	Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. <i>Nano Letters</i> , 2012 , 12, 1660-7	11.5	392
367	Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. <i>Nano Letters</i> , 2012 , 12, 1333-9	11.5	378
366	Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. <i>Journal of the American Chemical Society</i> , 2014 , 136, 64-7	16.4	375
365	Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 2010 , 4, 819-32	16.7	375
364	Hydrogen adsorption on metal surfaces. <i>Surface Science</i> , 1984 , 136, 59-81	1.8	373
363	Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. <i>Nano Letters</i> , 2009 , 9, 2188-92	11.5	372
362	Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. <i>Nano Letters</i> , 2013 , 13, 3281-6	11.5	365
361	Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11677-81	11.5	352
360	Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. <i>Nano Letters</i> , 2013 , 13, 1736-42	11.5	346
359	Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. <i>ACS Nano</i> , 2010 , 4, 1664-70	16.7	344
358	Nanoparticles heat through light localization. <i>Nano Letters</i> , 2014 , 14, 4640-5	11.5	320
357	Plasmon-induced doping of graphene. ACS Nano, 2012, 6, 10222-8	16.7	317
356	Fano-like interference in self-assembled plasmonic quadrumer clusters. <i>Nano Letters</i> , 2010 , 10, 4680-5	11.5	314
355	Quantum plexcitonics: strongly interacting plasmons and excitons. <i>Nano Letters</i> , 2011 , 11, 2318-23	11.5	313
354	Magnetic-plasmonic core-shell nanoparticles. ACS Nano, 2009, 3, 1379-88	16.7	303
353	Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12247-55	16.4	299

352	A plasmonic Fano switch. <i>Nano Letters</i> , 2012 , 12, 4977-82	11.5	291
351	Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. <i>ACS Nano</i> , 2009 , 3, 3015-22	16.7	286
350	On the energy shift between near-field and far-field peak intensities in localized plasmon systems. <i>Nano Letters</i> , 2011 , 11, 1280-3	11.5	284
349	Plasmon Hybridization in Nanoparticles near Metallic Surfaces. <i>Nano Letters</i> , 2004 , 4, 2209-2213	11.5	282
348	Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. <i>Nano Letters</i> , 2007 , 7, 139	6- 40.9	280
347	Fano resonances in plasmonic nanoparticle aggregates. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 402	8-3.48	273
346	Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17740-17747	3.4	273
345	Heterometallic antenna-reactor complexes for photocatalysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 8916-20	11.5	272
344	Fanoshells: nanoparticles with built-in Fano resonances. <i>Nano Letters</i> , 2010 , 10, 2694-701	11.5	271
343	Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano, 2013, 7, 4527-36	16.7	264
342	Simultaneous measurements of electronic conduction and Raman response in molecular junctions. <i>Nano Letters</i> , 2008 , 8, 919-24	11.5	256
341	Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. <i>Nature Communications</i> , 2015 , 6, 7797	17.4	252
340	Symmetry breaking in individual plasmonic nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10856-60	11.5	246
339	Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. <i>Nano Letters</i> , 2008 , 8, 2497-502	11.5	245
338	Embedding plasmonic nanostructure diodes enhances hot electron emission. <i>Nano Letters</i> , 2013 , 13, 1687-92	11.5	244
337	Vivid, full-color aluminum plasmonic pixels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 14348-53	11.5	243
336	Branched silver nanowires as controllable plasmon routers. <i>Nano Letters</i> , 2010 , 10, 1950-4	11.5	237

334	Nanophotonics-enabled solar membrane distillation for off-grid water purification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6936-6941	11.5	227
333	Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. <i>Nano Letters</i> , 2011 , 11, 471-5	11.5	226
332	Electronic Structure and Optical Properties of Gold Nanoshells. <i>Nano Letters</i> , 2003 , 3, 1411-1415	11.5	226
331	Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. <i>Nature Communications</i> , 2017 , 8, 27	17.4	220
330	Plasmon modes of nanosphere trimers and quadrumers. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 123	03.410	220
329	Energy shifts and broadening of atomic levels near metal surfaces. <i>Physical Review B</i> , 1990 , 42, 5564-55	7 ; 8 3	219
328	Structural Tunability of the Plasmon Resonances in Metallic Nanoshells. <i>Nano Letters</i> , 2003 , 3, 543-547	11.5	218
327	Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. <i>Nature Energy</i> , 2020 , 5, 61-70	62.3	213
326	Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano, 2010, 4, 5269-76	516.7	207
325	Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. <i>Nature Communications</i> , 2014 , 5, 4424	17.4	201
324	Nanosphere-in-a-Nanoshell: A Simple Nanomatryushkaâ\[]Journal of Physical Chemistry C, 2010 , 114, 737	8 5 78383	3 197
323	Finite-difference time-domain studies of the optical properties of nanoshell dimers. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10042-51	3.4	197
322	Energy shifts and broadening of excited hydrogen-atom levels in the vicinity of a metal surface. <i>Physical Review Letters</i> , 1988 , 61, 990-993	7.4	196
321	Shedding light on dark plasmons in gold nanorings. <i>Chemical Physics Letters</i> , 2008 , 458, 262-266	2.5	193
320	Chiral surface plasmon polaritons on metallic nanowires. <i>Physical Review Letters</i> , 2011 , 107, 096801	7.4	191
319	Nanoparticle-mediated coupling of light into a nanowire. <i>Nano Letters</i> , 2007 , 7, 2346-50	11.5	191
318	Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. <i>Nano Letters</i> , 2012 , 12, 10	58163	187
317	Optical spectroscopy of conductive junctions in plasmonic cavities. <i>Nano Letters</i> , 2010 , 10, 3090-5	11.5	187

316	Unidirectional broadband light emission from supported plasmonic nanowires. <i>Nano Letters</i> , 2011 , 11, 706-11	11.5	186
315	Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. <i>Nano Letters</i> , 2009 , 9, 2049-53	11.5	186
314	Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. <i>ACS Nano</i> , 2010 , 4, 4657-66	16.7	186
313	Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). <i>Nano Letters</i> , 2015 , 15, 1272-80	11.5	182
312	Removing a wedge from a metallic nanodisk reveals a fano resonance. <i>Nano Letters</i> , 2011 , 11, 4475-9	11.5	181
311	Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9215-9	11.5	180
310	Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. <i>Chemical Physics Letters</i> , 2008 , 452, 115-119	2.5	179
309	Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe. <i>Nano Letters</i> , 2017 , 17, 3809-3814	11.5	178
308	Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. <i>Nano Letters</i> , 2017 , 17, 6034-6039	11.5	175
307	Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3688-95	16.4	175
306	Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. <i>Physical Review Letters</i> , 2013 , 110, 263901	7.4	173
305	Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. <i>Chemical Physics Letters</i> , 2004 , 399, 167-171	2.5	173
304	Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. ACS Nano, 2015, 9, 10628-3	8 6 16.7	172
303	Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. <i>Chemical Physics Letters</i> , 2007 , 446, 115-118	2.5	164
302	Fluorescence enhancement of molecules inside a gold nanomatryoshka. <i>Nano Letters</i> , 2014 , 14, 2926-3	311.5	163
301	Derivation of a master equation for charge-transfer processes in atom-surface collisions. <i>Physical Review B</i> , 1991 , 43, 2541-2557	3.3	163
300	Breaking individual chemical bonds via STM-induced excitations. <i>Surface Science</i> , 1996 , 363, 368-377	1.8	161
299	Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis. <i>Nano Letters</i> , 2017 , 17, 3710-3717	11.5	155

298	Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts. <i>Nano Letters</i> , 2016 , 16, 6677-6682	11.5	154
297	Active Light Control of the MoS2 Monolayer Exciton Binding Energy. ACS Nano, 2015, 9, 10158-64	16.7	153
296	Three-dimensional plasmonic nanoclusters. <i>Nano Letters</i> , 2013 , 13, 4399-403	11.5	148
295	Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11083-7	3.4	148
294	The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. <i>Chemical Physics Letters</i> , 2002 , 360, 325-332	2.5	147
293	Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 370-4	6.4	146
292	Aluminum nanocrystals. <i>Nano Letters</i> , 2015 , 15, 2751-5	11.5	144
291	Color-selective and CMOS-compatible photodetection based on aluminum plasmonics. <i>Advanced Materials</i> , 2014 , 26, 6318-23	24	144
2 90	A single molecule immunoassay by localized surface plasmon resonance. <i>Nanotechnology</i> , 2010 , 21, 255	5,03	140
289	Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. <i>Nano Letters</i> , 2005 , 5, 2009-13	11.5	140
288	Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. <i>Nano Letters</i> , 2017 , 17, 5071-5077	11.5	133
287	High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. <i>ACS Nano</i> , 2016 , 10, 1108-17	16.7	131
286	The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells. ACS Nano, 2014 , 8, 3222-	- 3 16.7	131
285	Tunable plasmonic nanoparticles with catalytically active high-index facets. <i>Nano Letters</i> , 2014 , 14, 3674	1 -18 125	131
284	Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. <i>Nano Letters</i> , 2017 , 17, 5768-5774	11.5	131
283	Plasmonic nanoclusters: a path towards negative-index metafluids. <i>Optics Express</i> , 2007 , 15, 14129-45	3.3	130
282	DNA-enabled self-assembly of plasmonic nanoclusters. <i>Nano Letters</i> , 2011 , 11, 4859-64	11.5	128
281	From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. <i>Science Advances</i> , 2015 , 1, e1500988	14.3	127

(2012-2013)

280	Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. <i>Optics Express</i> , 2013 , 21, 27306-25	3.3	127	
279	Optical properties of a nanosized hole in a thin metallic film. ACS Nano, 2008, 2, 25-32	16.7	126	
278	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. <i>Nano Letters</i> , 2015 , 15, 6946-51	11.5	125	
277	Multipolar plasmon resonances in individual ag nanorice. ACS Nano, 2010 , 4, 2649-54	16.7	125	
276	Plasmonic focusing in symmetry broken nanocorrals. <i>Nano Letters</i> , 2011 , 11, 893-7	11.5	124	
275	Directional light emission from propagating surface plasmons of silver nanowires. <i>Nano Letters</i> , 2009 , 9, 4383-6	11.5	122	
274	Correlation between incident and emission polarization in nanowire surface plasmon waveguides. <i>Nano Letters</i> , 2010 , 10, 1831-5	11.5	122	
273	A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. <i>Faraday Discussions</i> , 2015 , 178, 151-83	3.6	119	
272	Noble metal nanowires: from plasmon waveguides to passive and active devices. <i>Accounts of Chemical Research</i> , 2012 , 45, 1887-95	24.3	119	
271	Fano resonances in planar silver nanosphere clusters. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 100, 333-339	2.6	119	
270	Real-space mapping of Fano interference in plasmonic metamolecules. <i>Nano Letters</i> , 2011 , 11, 3922-6	11.5	117	
269	How Long Does It Take for the Kondo Effect to Develop?. <i>Physical Review Letters</i> , 1999 , 83, 808-811	7.4	116	
268	Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. <i>Physical Review B</i> , 2007 , 76,	3.3	115	
267	Electronic structure of small GaAs clusters. <i>Journal of Chemical Physics</i> , 1991 , 94, 8015-8020	3.9	115	
266	Tunable wide-angle plasmonic perfect absorber at visible frequencies. <i>Physical Review B</i> , 2012 , 85,	3.3	114	
265	Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano, 2010, 4, 6639-50	16.7	113	
264	Hot Hole Photoelectrochemistry on Au@SiO@Au Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2060-2067	6.4	110	
263	Magnetic plasmon formation and propagation in artificial aromatic molecules. <i>Nano Letters</i> , 2012 , 12, 364-9	11.5	107	

262	Plasmon hybridization in nanorod dimers. Applied Physics B: Lasers and Optics, 2008, 93, 209-216	1.9	107
261	Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer. <i>Nano Letters</i> , 2015 , 15, 6419-28	11.5	106
260	Effects of dielectric screening on the optical properties of metallic nanoshells. <i>Chemical Physics Letters</i> , 2003 , 368, 94-101	2.5	105
259	Electronic structure of small GaAs clusters. II. <i>Journal of Chemical Physics</i> , 1992 , 97, 1858-1864	3.9	103
258	Response to Comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis". <i>Science</i> , 2019 , 364,	33.3	102
257	Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substratesâ[] <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7302-7307	3.8	102
256	The interaction of helium with smooth metal surfaces. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 1141-1152		102
255	Theoretical examination of the trapping of ion-implanted hydrogen in metals. <i>Physical Review B</i> , 1986 , 33, 854-863	3.3	99
254	Plasmonic mode engineering with templated self-assembled nanoclusters. <i>Nano Letters</i> , 2012 , 12, 5318	8 -24 .5	97
253	Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. <i>ACS Nano</i> , 2015 , 9, 6428-35	16.7	96
252	Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Letters, 2013, 13, 14	2 17 1.5	94
251	Plasmonic radiance: probing structure at the figstrffn scale with visible light. <i>Nano Letters</i> , 2013 , 13, 497-503	11.5	94
250	Nanoparticle-Mediated, Light-Induced Phase Separations. <i>Nano Letters</i> , 2015 , 15, 7880-5	11.5	93
249	The ring: a leitmotif in plasmonics. <i>ACS Nano</i> , 2009 , 3, 488-92	16.7	93
248	Trends in hydrogen heats of solution and vacancy trapping energies in transition metals. <i>Journal of Physics F: Metal Physics</i> , 1986 , 16, 1161-1171		93
247	Multiple hydrogen occupancy of vacancies in Fe. <i>Journal of Applied Physics</i> , 1987 , 61, 1788-1794	2.5	91
246	Fullerene nanotubes in electric fields. <i>Physical Review B</i> , 1995 , 52, 1429-1432	3.3	90
245	Asymmetric Aluminum Antennas for Self-Calibrating Surface-Enhanced Infrared Absorption Spectroscopy. <i>ACS Photonics</i> , 2016 , 3, 354-360	6.3	89

244	The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics, 2015, 2, 295-305	6.3	89
243	Tunable molecular plasmons in polycyclic aromatic hydrocarbons. ACS Nano, 2013, 7, 3635-43	16.7	89
242	Multiple deuterium occupancy of vacancies in Pd and related metals. <i>Physical Review B</i> , 1989 , 40, 1990-	1 <u>9</u> .92	89
241	Plasmon-Mediated Catalytic O2 Dissociation on Ag Nanostructures: Hot Electrons or Near Fields?. <i>ACS Energy Letters</i> , 2019 , 4, 1803-1809	20.1	86
240	Manipulating magnetic plasmon propagation in metallic nanocluster networks. ACS Nano, 2012, 6, 5482	2-8 6.7	85
239	Angle- and spectral-dependent light scattering from plasmonic nanocups. ACS Nano, 2011 , 5, 7254-62	16.7	85
238	Plasmon hybridization in nanoshell dimers. <i>Journal of Chemical Physics</i> , 2005 , 123, 24701	3.9	84
237	Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. <i>Journal of Chemical Physics</i> , 2011 , 134, 074701	3.9	80
236	Photoelectron spectroscopy of transition-metal clusters: Correlation of valence electronic structure to reactivity. <i>Physical Review B</i> , 1995 , 51, 4668-4671	3.3	80
235	Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers. <i>ACS Nano</i> , 2018 , 12, 976-985	16.7	79
234	Quantum plasmonics: optical properties of a nanomatryushka. <i>Nano Letters</i> , 2013 , 13, 5873-9	11.5	79
233	Relaxation of Plasmon-Induced Hot Carriers. <i>ACS Photonics</i> , 2018 , 5, 2584-2595	6.3	79
232	Lifetimes of negative-ion states near metal surfaces. <i>Physical Review B</i> , 1992 , 46, 2584-2590	3.3	77
231	A plethora of plasmonics from the laboratory for nanophotonics at Rice University. <i>Advanced Materials</i> , 2012 , 24, 4842-77, 4774	24	76
230	Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. <i>Applied Physics B: Lasers and Optics</i> , 2006 , 84, 35-41	1.9	76
229	Lifetimes of excited atoms near metal surfaces. <i>Surface Science</i> , 1989 , 211-212, 207-217	1.8	75
228	Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. <i>ACS Nano</i> , 2015 , 9, 5968-75	16.7	73
227	Multicolor Electrochromic Devices Based on Molecular Plasmonics. ACS Nano, 2017 , 11, 3254-3261	16.7	72

226	Bethe-hole polarization analyser for the magnetic vector of light. <i>Nature Communications</i> , 2011 , 2, 451	17.4	71
225	Ionization of xenon Rydberg atoms at a metal surface. <i>Physical Review Letters</i> , 2000 , 85, 5444-7	7.4	71
224	Many-body theory for charge transfer in atom-surface collisions. <i>Physical Review B</i> , 1994 , 49, 13929-139	47 3	71
223	Plasmon hybridization in nanoshells with a nonconcentric core. <i>Journal of Chemical Physics</i> , 2006 , 125, 124708	3.9	70
222	Physisorption interaction of H2 with noble metals. <i>Surface Science</i> , 1985 , 152-153, 702-709	1.8	69
221	Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles. <i>Nano Letters</i> , 2012 , 12, 5020-6	11.5	68
220	Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. <i>Nano Letters</i> , 2020 , 20, 2087-2093	11.5	67
219	Coherent modulation of propagating plasmons in silver-nanowire-based structures. <i>Small</i> , 2011 , 7, 593-	611	67
218	Molecular Plasmonics. <i>Nano Letters</i> , 2015 , 15, 6208-14	11.5	66
217	Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. <i>Nano Letters</i> , 2016 , 16, 5183-90	11.5	66
216	Combining Plasmonic Hot Carrier Generation with Free Carrier Absorption for High-Performance Near-Infrared Silicon-Based Photodetection. <i>ACS Photonics</i> , 2018 , 5, 3472-3477	6.3	66
215	Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires. <i>Nano Letters</i> , 2010 , 10, 3482-5	11.5	66
214	Plasmonic interactions between a metallic nanoshell and a thin metallic film. <i>Physical Review B</i> , 2007 , 76,	3.3	66
213	Transition-Metal Decorated Aluminum Nanocrystals. ACS Nano, 2017, 11, 10281-10288	16.7	64
212	Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. <i>ACS Nano</i> , 2016 , 10, 6180-8	16.7	64
211	Energy shifts and broadening of atomic electron levels near impurity-covered metal surfaces. <i>Physical Review B</i> , 1991 , 44, 13681-13688	3.3	63
210	Toroidal Dipole-Enhanced Third Harmonic Generation of Deep Ultraviolet Light Using Plasmonic Meta-atoms. <i>Nano Letters</i> , 2019 , 19, 605-611	11.5	63
209	Enhancing T magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6960-6965	11.5	62

208	Electronic structure and polarizability of metallic nanoshells. Chemical Physics Letters, 2002, 352, 140-1	46 .5	61
207	Effect of a proximal substrate on plasmon propagation in silver nanowires. <i>Physical Review B</i> , 2010 , 82,	3.3	60
206	Kondo physics in the single-electron transistor with ac driving. <i>Physical Review B</i> , 2000 , 61, 2146-2150	3.3	57
205	Plasmon blockade in nanostructured graphene. ACS Nano, 2012 , 6, 1724-31	16.7	56
204	Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. <i>Nano Letters</i> , 2012 , 12, 4881-8	11.5	56
203	Plasmonic Photocatalysis of Nitrous Oxide into N and O Using Aluminum-Iridium Antenna-Reactor Nanoparticles. <i>ACS Nano</i> , 2019 , 13, 8076-8086	16.7	55
202	Active quantum plasmonics. <i>Science Advances</i> , 2015 , 1, e1501095	14.3	55
201	A tunable plasmon resonance in gold nanobelts. <i>Nano Letters</i> , 2011 , 11, 5034-7	11.5	55
200	Plasmonic coupling between a metallic nanosphere and a thin metallic wire. <i>Applied Physics Letters</i> , 2006 , 89, 103101	3.4	55
199	Vibrational autodetachment spectroscopy of Auâß: Image-charge-bound states of a gold ring. Journal of Chemical Physics, 1990 , 93, 7515-7518	3.9	55
198	Indirect electronic interaction between hydrogen atoms adsorbed on metals. <i>Surface Science</i> , 1985 , 159, 443-465	1.8	55
197	Aluminum Nanorods. <i>Nano Letters</i> , 2018 , 18, 1234-1240	11.5	54
196	Theory of Quantum Plasmon Resonances in Doped Semiconductor Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16035-16042	3.8	54
195	How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017, 11, 7321-733	5 16.7	54
194	Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package. <i>ACS Photonics</i> , 2015 , 2, 369-375	6.3	54
193	Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires. <i>ACS Nano</i> , 2012 , 6, 8105-13	16.7	53
192	Vacuum Ultraviolet Light-Generating Metasurface. <i>Nano Letters</i> , 2018 , 18, 5738-5743	11.5	52
191	Combining Solar Steam Processing and Solar Distillation for Fully Off-Grid Production of Cellulosic Bioethanol. <i>ACS Energy Letters</i> , 2017 , 2, 8-13	20.1	52

190	Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy. <i>Nano Letters</i> , 2012 , 12, 2817-21	11.5	52
189	Metal-organic frameworks tailor the properties of aluminum nanocrystals. <i>Science Advances</i> , 2019 , 5, eaav5340	14.3	50
188	Photoinduced Force Mapping of Plasmonic Nanostructures. <i>Nano Letters</i> , 2016 , 16, 7942-7949	11.5	50
187	Kondo time scales for quantum dots: Response to pulsed bias potentials. <i>Physical Review B</i> , 2000 , 61, R13341-R13344	3.3	50
186	Solar thermal desalination as a nonlinear optical process. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 13182-13187	11.5	48
185	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. <i>Nature Communications</i> , 2015 , 6, 7022	17.4	48
184	Formation of excited hydrogen states in stimulated desorption from an alkali-promoted surface. <i>Physical Review Letters</i> , 1990 , 64, 942-945	7.4	48
183	High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps. <i>ACS Nano</i> , 2015 , 9, 9331-9	16.7	46
182	Energies and lifetimes of atomic Rydberg states near metal surfaces. <i>Physical Review B</i> , 1996 , 53, 4125-	43.32	46
181	Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides. Journal of Physical Chemistry B, 2002 , 106, 5609-5612	3.4	43
180	Optomechanics of Single Aluminum Nanodisks. <i>Nano Letters</i> , 2017 , 17, 2575-2583	11.5	42
179	Perforated semishells: far-field directional control and optical frequency magnetic response. <i>ACS Nano</i> , 2010 , 4, 2701-12	16.7	41
178	Electronic structure of the hollow-cage M8X12 clusters. <i>Journal of Chemical Physics</i> , 1993 , 99, 5301-530	153.9	41
177	Electron-stimulated desorption of neutral lithium atoms from LiF due to excitation of surface excitons. <i>Physical Review B</i> , 1991 , 43, 6729-6732	3.3	40
176	Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. <i>ACS Nano</i> , 2019 , 13, 3117-3124	16.7	39
175	Adsorbate-Induced Quenching of Hot Electrons in Gold CoreâBhell Nanoparticles. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9913-9917	3.4	39
174	Anti-Stokes Emission from Hot Carriers in Gold Nanorods. <i>Nano Letters</i> , 2019 , 19, 1067-1073	11.5	38
173	Electron Energy-Loss Spectroscopy of Multipolar Edge and Cavity Modes in Silver Nanosquares. <i>ACS Photonics</i> , 2016 , 3, 428-433	6.3	38

172	Doped Silicon Nanocrystal Plasmonics. ACS Photonics, 2017, 4, 963-970	6.3	37
171	Vibrational coupling in plasmonic molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11621-11626	11.5	37
170	Multielectron effects in the interaction of Fâllons with Ag(110). Surface Science, 1998, 415, L1027-L103	311.8	37
169	Plasmon modes of curvilinear metallic core/shell particles. <i>Journal of Chemical Physics</i> , 2007 , 126, 1447	708 .9	37
168	Wavelet based in eigenvalue problems in quantum mechanics. <i>Chemical Physics Letters</i> , 1996 , 250, 485	5-4 9.4 5	36
167	Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties. <i>Chemical Science</i> , 2011 , 2, 2392	9.4	35
166	The effects of an external electric field on the adatom-surface bond: H and Al adsorbed on Si(111). <i>Surface Science</i> , 1997 , 372, 9-20	1.8	35
165	Formation of long-lived C60âlions in Rydberg atom-C60 collisions. <i>Chemical Physics Letters</i> , 1995 , 244, 345-349	2.5	35
164	The Interaction of H2With Metal Surfaces. <i>Physica Scripta</i> , 1986 , T13, 155-160	2.6	35
163	Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source. <i>Nano Letters</i> , 2016 , 16, 3373-8	11.5	35
162	Wavelength-Dependent Optical Force Imaging of Bimetallic Al-Au Heterodimers. <i>Nano Letters</i> , 2018 , 18, 2040-2046	11.5	34
161	Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires. <i>ACS Nano</i> , 2014 , 8, 572-80	16.7	34
160	Terahertz transmission properties of an individual slit in a thin metallic plate. <i>Optics Express</i> , 2009 , 17, 12660-7	3.3	34
159	Transient currents and universal time scales for a fully time-dependent quantum dot in the Kondo regime. <i>Physical Review B</i> , 2005 , 71,	3.3	34
158	Morphology-Dependent Reactivity of a Plasmonic Photocatalyst. ACS Nano, 2020, 14, 12054-12063	16.7	34
157	Aluminum Nanocubes Have Sharp Corners. ACS Nano, 2019, 13, 9682-9691	16.7	33
156	On the nature of the bonding and antibonding metallic film and nanoshell plasmons. <i>Chemical Physics Letters</i> , 2009 , 472, 228-231	2.5	33
155	Angular dependence of charge-transfer probabilities between O- and a Ni{100}-c(2 x 2)-O surface. <i>Physical Review Letters</i> , 1992 , 69, 188-191	7.4	33

154	Polymer-Directed Growth of Plasmonic Aluminum Nanocrystals. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15412-15418	16.4	33
153	Generating Third Harmonic Vacuum Ultraviolet Light with a TiO Metasurface. <i>Nano Letters</i> , 2019 , 19, 8972-8978	11.5	32
152	Interaction of Rydberg atoms with a metal surface in the presence of an external electric field. <i>Physical Review B</i> , 1996 , 53, 8083-8089	3.3	32
151	Absorption Spectroscopy of an Individual Fano Cluster. <i>Nano Letters</i> , 2016 , 16, 6497-6503	11.5	32
150	Plasmonic properties of a metallic torus. <i>Journal of Chemical Physics</i> , 2008 , 129, 084706	3.9	31
149	Quadrature integration for orthogonal wavelet systems. <i>Journal of Chemical Physics</i> , 1999 , 110, 8309-83	3. 3	31
148	On the binding of electrons to CS2: Possible role of quadrupole-bound states. <i>Chemical Physics Letters</i> , 1996 , 253, 8-12	2.5	31
147	Time-of-flight scattering and recoiling spectrometry. III. The structure of hydrogen on the W(211) surface. <i>Physical Review B</i> , 1989 , 40, 10163-10180	3.3	31
146	Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires. <i>Nano Letters</i> , 2014 , 14, 3628-33	11.5	30
145	Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission. <i>ACS Nano</i> , 2020 , 14, 15757-15765	16.7	30
144	Plasmon-driven carbonâfluorine (C(sp3)âfl) bond activation with mechanistic insights into hot-carrier-mediated pathways. <i>Nature Catalysis</i> , 2020 , 3, 564-573	36.5	29
143	Spin-dependent studies of the dynamics of He+ ion neutralization at a Au(100) surface. <i>Physical Review B</i> , 1999 , 60, 9082-9089	3.3	29
142	Probing the Highly Correlated Mixed-Valent State via Charge Transfer with Atoms Moving Out from a Surface. <i>Physical Review Letters</i> , 1996 , 77, 948-951	7.4	29
141	Ultrafast Electron Dynamics in Single Aluminum Nanostructures. <i>Nano Letters</i> , 2019 , 19, 3091-3097	11.5	28
140	Routes to Potentially Safer T Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence. <i>ACS Nano</i> , 2018 , 12, 8214-8223	16.7	28
139	Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances. <i>Physical Review B</i> , 2012 , 86,	3.3	28
138	Determination of the structure of hydrogen on a W(211) surface. <i>Physical Review Letters</i> , 1989 , 63, 1408	7 1411	28
137	Anisotropy of oxygen transport in YBa2Cu3O7: The role of the [], b,0] tunnels. <i>Physica C:</i> Superconductivity and Its Applications, 1988 , 153-155, 834-835	1.3	28

(2016-2016)

136	Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance. <i>ACS Nano</i> , 2016 , 10, 6972-9	16.7	28	
135	Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. Journal of Physical Chemistry Letters, 2017 , 8, 2681-2688	6.4	27	
134	Theoretical description of quasiresonant charge exchange in atom-surface collisions. <i>Physical Review B</i> , 1994 , 49, 13948-13965	3.3	27	
133	Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. <i>ACS Energy Letters</i> , 2019 , 4, 2458-2465	20.1	26	
132	Photocatalytic Hydrogenation of Graphene Using Pd Nanocones. <i>Nano Letters</i> , 2019 , 19, 4413-4419	11.5	26	
131	Environmental Symmetry Breaking Promotes Plasmon Mode Splitting in Gold Nanotriangles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13259-13266	3.8	26	
130	Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface. <i>Nano Letters</i> , 2013 , 13, 5997-6001	11.5	26	
129	Extended Htkel theory for ionic molecules and solids: An application to alkali halides. <i>Journal of Chemical Physics</i> , 1988 , 89, 4163-4169	3.9	26	
128	Gold nanobelts as high confinement plasmonic waveguides. <i>Nano Letters</i> , 2013 , 13, 6256-61	11.5	25	
127	First principles resonance widths for Li near an Al(001) surface: predictions of scattered ion neutralization probabilities. <i>Journal of Chemical Physics</i> , 2004 , 121, 3751-5	3.9	25	
126	Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles. <i>ACS Nano</i> , 2016 , 10, 4835-46	16.7	25	
125	Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. <i>Nano Letters</i> , 2019 , 19, 3838-3845	11.5	24	
124	Behavior of Rydberg atoms at surfaces: energy level shifts and ionization. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2003 , 203, 69-75	1.2	24	
123	Potentials for atom-surface scattering. Surface Science, 1983 , 126, 675-680	1.8	24	
122	Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1716-1724	16.4	24	
121	Atomic Scale Photodetection Enabled by a Memristive Junction. ACS Nano, 2018, 12, 6706-6713	16.7	24	
120	Plasmonic Coupling of Multipolar Edge Modes and the Formation of Gap Modes. <i>ACS Photonics</i> , 2017 , 4, 1558-1565	6.3	22	
119	Laser-Induced Spectral Hole-Burning through a Broadband Distribution of Au Nanorods. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20518-20524	3.8	21	

118	Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. <i>Nature Photonics</i> , 2020 , 14, 723-727	33.9	21
117	Lifetime dynamics of plasmons in the few-atom limit. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 9134-9139	11.5	21
116	Resonant energy transfer enhances solar thermal desalination. <i>Energy and Environmental Science</i> , 2020 , 13, 968-976	35.4	20
115	Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1352-7	6.4	20
114	Exchange and correlations effects in small metallic nanoshells. Chemical Physics Letters, 2001, 349, 153-	1269	20
113	Carbon atomic chains in strong electric fields. <i>Physical Review B</i> , 1996 , 54, 16659-16662	3.3	20
112	Dynamics of metastable-atom deexcitation at metal surfaces. <i>Physical Review B</i> , 1991 , 44, 3246-3250	3.3	20
111	Calculation of the barrier for oxygen incorporation into metal and metal-oxide surfaces. <i>Physical Review B</i> , 1987 , 36, 4982-4989	3.3	20
110	Barrier to oxygen penetration on metal and oxide surfaces. <i>Physical Review B</i> , 1987 , 35, 9403-9406	3.3	20
109	Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions. <i>Nano Letters</i> , 2020 , 20, 6067-6075	11.5	19
108	Impurity-induced plasmon damping in individual cobalt-doped hollow Au nanoshells. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 14056-61	3.4	19
107	Tunable plasmon resonances in a metallic nanotip-film system. <i>Nanoscale</i> , 2012 , 4, 5931-5	7.7	19
106	Low-energy dissociative electron attachment to CFCl3, CF2Br2, and 1,1,1- and 1,1,2-C2Cl3F3: Intermediate lifetimes and decay energetics. <i>Journal of Chemical Physics</i> , 1997 , 106, 9594-9601	3.9	19
105	Dynamics of Rydberg atoms near metal surfaces in the presence of an electric field. <i>Surface Science</i> , 1999 , 423, L271-L276	1.8	19
104	Plasmonics: The dark side of the ring. <i>Nature Nanotechnology</i> , 2013 , 8, 76-7	28.7	18
103	Standing wave plasmon modes interact in an antenna-coupled nanowire. <i>Nano Letters</i> , 2015 , 15, 1324-3	0 11.5	18
102	Excimer Model for Photoluminescence in Single-Crystal C60. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 2854-2861		18
101	Interaction of Rydberg atoms with surfaces: Electron tunneling processes. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 300-304	1.2	18

100	Disintegration of finite carbon chains in electric fields. <i>Chemical Physics Letters</i> , 1997 , 264, 345-350	2.5	18
99	Mechanism of enhanced broadening of the ionization level of Li outside transition metal surfaces. <i>Physical Review B</i> , 2006 , 74,	3.3	17
98	Nonadiabatic effects in charge transfer in atom-surface scattering. <i>Physical Review B</i> , 1995 , 52, 2988-29	19543	17
97	Influence of coadsorbed potassium on the electron-stimulated desorption of F+, F-, and F* from PF3 on Ru(0001). <i>Physical Review B</i> , 1992 , 45, 14264-14272	3.3	17
96	Site-Selective Nanoreactor Deposition on Photocatalytic Al Nanocubes. <i>Nano Letters</i> , 2020 , 20, 4550-45	5 57 1.5	16
95	Influence of surface band gaps on the lifetimes of charge transfer states. <i>Surface Science</i> , 2006 , 600, L291-L295	1.8	16
94	Electron tunneling rates between an atom and a corrugated surface. Physical Review B, 2001, 64,	3.3	16
93	An endohedral metallocarbohedrene C@Ti8C12. Chemical Physics Letters, 1994, 224, 439-444	2.5	16
92	Applied physics. Molecular tuning of quantum plasmon resonances. <i>Science</i> , 2014 , 343, 1444-5	33.3	15
91	Low-energy dissociative electron attachment to CH2Br2, CHClBr2, and CCl3Br: Intermediate lifetimes and decay energetics. <i>Journal of Chemical Physics</i> , 1998 , 109, 8829-8835	3.9	15
90	Plasmon hybridization in stacked double gold nanorings with reduced symmetry. <i>Small</i> , 2008 , 4, 1630-4	11	15
89	Transient current in a quantum dot subject to a change in coupling to its leads. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 8995-9006	1.8	15
88	Avoided Crossings in the Interaction of a Xe Rydberg Atom with a Metal Surfaceâ\(\(\textit{Journal of Physical Chemistry B}\), 2002 , 106, 8338-8341	3.4	15
87	Surface Structure and Electron Density Dependence of Scattered Ne+ Ion Fractions from Cd- and S-Terminated CdS{0001} Surfaces. <i>Physical Review Letters</i> , 1998 , 81, 5153-5156	7.4	15
86	Photoluminescence spectra of epitaxial single crystal C60. <i>Chemical Physics Letters</i> , 1995 , 242, 592-597	2.5	15
85	Interaction of hydrogen isotopes with metals: Deuterium trapped at lattice defects in palladium. <i>Journal of Fusion Energy</i> , 1990 , 9, 257-261	1.6	15
84	Quantum junction plasmons in graphene dimers. Laser and Photonics Reviews, 2013, 7, 297-302	8.3	14
83	Ionization of xenon Rydberg atoms at surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 193, 403-407	1.2	14

82	On the Kohn-Sham Equations with Periodic Background Potentials. <i>Journal of Statistical Physics</i> , 2003 , 111, 967-992	1.5	14
81	Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance. Journal of Physical Chemistry Letters, 2019 , 10, 1743-1749	6.4	13
80	Virtual issue on plasmonics. ACS Nano, 2011 , 5, 4245-8	16.7	13
79	Low energy (. Journal of Chemical Physics, 1997, 106, 2801-2810	3.9	13
78	Charge-transfer cross sections for radiative charge transfer in Na+H+ and K+H+ collisions at very low energies. <i>Physical Review A</i> , 2002 , 66,	2.6	13
77	Energies and lifetimes of xenon Rydberg states near a metal surface. Surface Science, 2000, 448, L193-L	.1 0 ,9	13
76	A room-temperature mid-infrared photodetector for on-chip molecular vibrational spectroscopy. <i>Applied Physics Letters</i> , 2018 , 113, 101105	3.4	13
75	Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. <i>Nano Letters</i> , 2020 , 20, 3499-3505	11.5	12
74	Plasmon hybridization for real metals. Science Bulletin, 2010, 55, 2629-2634		12
73	A density-functional study of the effects of an external electric field on admoleculeâBurface systems. <i>Surface Science</i> , 1998 , 401, 47-55	1.8	12
72	Electron- and photon-stimulated desorption of atomic hydrogen from radiation-modified alkali halide surfaces. <i>Physical Review B</i> , 2000 , 62, 10535-10543	3.3	12
71	Charge transfer in collisions of C2+ ions with H atoms at low-keV energies: A possible bound state of CH2+. <i>Physical Review A</i> , 1998 , 57, 4483-4489	2.6	12
70	Crystallographic dependence of recoiled Oion fractions from Ni{100}c(2 x 2)-O and NiO{100} surfaces. <i>Physical Review B</i> , 1993 , 47, 2369-2377	3.3	12
69	A density functional study of small alkali halide systems. <i>Journal of Chemical Physics</i> , 1994 , 101, 8903-89	9979	12
68	A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients. <i>ACS Nano</i> , 2021 , 15, 8761-8769	16.7	12
67	Hot carrier multiplication in plasmonic photocatalysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	12
66	Molecular Plasmon-Phonon Coupling. <i>Nano Letters</i> , 2016 , 16, 6390-6395	11.5	12
65	Exploiting Evanescent Field Polarization for Giant Chiroptical Modulation from Achiral Gold Half-Rings. <i>ACS Nano</i> , 2018 , 12, 11657-11663	16.7	12

64	Fabrication of Split-Rings via Stretchable Colloidal Lithography. ACS Photonics, 2014, 1, 127-134	6.3	11
63	Oblique Colloidal Lithography for the Fabrication of Nonconcentric Features. ACS Nano, 2017, 11, 6594	-660/4	11
62	Antibonding plasmon mode coupling of an individual hole in a thin metallic film. <i>Physical Review B</i> , 2009 , 80,	3.3	11
61	Vibrational properties of hydrogen chemisorbed on W(001) and Mo(001). <i>Surface Science</i> , 1990 , 234, 412-420	1.8	11
60	Optical-Force-Dominated Directional Reshaping of Au Nanodisks in Al-Au Heterodimers. <i>Nano Letters</i> , 2018 , 18, 6509-6514	11.5	11
59	Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems. <i>Nano Letters</i> , 2021 , 21, 1083-1089	11.5	11
58	Quantifying Remote Heating from Propagating Surface Plasmon Polaritons. <i>Nano Letters</i> , 2017 , 17, 564	1 6-5.6 5	210
57	The effect of water on the Fe(3+)/Fe(2+) reduction potential of heme. <i>Biochemical and Biophysical Research Communications</i> , 2000 , 268, 683-7	3.4	10
56	Giant photothermoelectric effect in silicon nanoribbon photodetectors. <i>Light: Science and Applications</i> , 2020 , 9, 120	16.7	10
55	UV-Resonant Al Nanocrystals: Synthesis, Silica Coating, and Broadband Photothermal Response. <i>Nano Letters</i> , 2021 , 21, 536-542	11.5	10
54	Optimum areal coverage for perfect transmission in a periodic metal hole array. <i>Applied Physics Letters</i> , 2010 , 97, 261112	3.4	9
53	Charge transfer in collisions of an H+ ion with a ground-state Mg atom at low keV collision energies. <i>Chemical Physics Letters</i> , 1997 , 264, 51-56	2.5	9
52	Polarized evanescent waves reveal trochoidal dichroism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 16143-16148	11.5	8
51	Charge-transfer cross sections in collisions of ground-state Na atoms with H+ at low-eV collision energies. <i>Physical Review A</i> , 2001 , 63,	2.6	8
50	Doping dependence of electronic charge transfer on Si(100). Surface Science, 2001, 489, L561-L567	1.8	8
49	Spin-dependent studies of the dynamics of He(23S) atom deexcitation at surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 100, 245-252	1.2	8
48	A density-functional study of cluster reactivity: Ammonia reacting with a free Ga5As5 cluster. Journal of Chemical Physics, 1994 , 101, 8922-8927	3.9	8
47	Theoretical study of O2 dissociation on copper and nickel clusters. <i>Surface Science</i> , 1994 , 320, 320-330	1.8	8

46	Plasmon Energy Transfer in Hybrid Nanoantennas. ACS Nano, 2021, 15, 9522-9530	16.7	8
45	Plasmonic nanoparticle-based epoxy photocuring: A deeper look. <i>Materials Today</i> , 2019 , 27, 14-20	21.8	8
44	Theory, Simulation, and Computation in Nanoscience and Nanotechnology. ACS Nano, 2017, 11, 6505-6	5 06 .7	7
43	Electron tunneling rates between atoms and surfaces covered by dielectric films. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 125, 305-309	1.2	7
42	Effect of parallel velocity on the formation of a Kondo resonance in the atom-surface interaction. <i>Physical Review B</i> , 1999 , 59, 13322-13327	3.3	7
41	Resonant charge transfer process in ionathetal surface collisions: effect of the presence of vacancies on the surface. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1999 , 157, 55-60	1.2	7
40	Use of spin-labelling techniques to probe the dynamics of He+ ion neutralization at clean metal surfaces. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1999 , 157, 68-74	1.2	7
39	All-Optically Reconfigurable Plasmonic Metagrating for Ultrafast Diffraction Management. <i>Nano Letters</i> , 2021 , 21, 1345-1351	11.5	7
38	Optical properties of a spherical two-dimensional electron gas in a uniform magnetic field. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 8233-8241	1.8	6
37	The dynamics of He+ ion neutralization at metal surfaces: spin dependent studies. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2002 , 193, 656-660	1.2	6
36	Hartree approximation I: The fixed point approach. <i>Journal of Mathematical Physics</i> , 2001 , 42, 3390-340	061.2	6
35	Trajectory dependence of scattered Ne+ and recoiled Sâllon fractions from the Cd- and S-terminated CdS{0001} surfaces. <i>Journal of Chemical Physics</i> , 1999 , 110, 8139-8149	3.9	6
34	A density-functional study of cluster reactivity. II. Two ammonia molecules reacting with a free Ga5As5 cluster. <i>Journal of Chemical Physics</i> , 1995 , 102, 7484-7489	3.9	6
33	Summary Abstract: Theoretical picture of the adsorption of H2 on metal surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1987 , 5, 698-699	2.9	6
32	Effects of Electronic Structure on Molecular Plasmon Dynamics. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 20450-20457	3.8	6
31	Al@TiO Core-Shell Nanoparticles for Plasmonic Photocatalysis ACS Nano, 2022,	16.7	6
30	Influence of the atomic polarization potential on the tunneling rates of electrons between atoms and surfaces. <i>Surface Science</i> , 1997 , 371, L235-L241	1.8	5
29	Simple master equation for the description of charge transfer in atom@surface scattering. <i>Progress in Surface Science</i> , 2001 , 67, 155-165	6.6	5

(1996-2002)

28	Effect of a surface Al adatom on the resonant charge transfer between an Hâllon and an Al(111) surface. <i>Surface Science</i> , 2002 , 506, 145-160	1.8	5
27	Anisotropic charge transfer between hydrogenic states and a metallic substrate. <i>Physical Review B</i> , 1993 , 47, 4142-4145	3.3	5
26	Use of spin-labelling techniques to probe the dynamics of He(23 S) deexcitation at solid surfaces. <i>Zeitschrift Fd Physik D-Atoms Molecules and Clusters</i> , 1994 , 30, 239-243		5
25	Intra-atomic correlation effects in charge transfer. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1993 , 78, 11-19	1.2	5
24	Plasmon-induced trap filling at grain boundaries in perovskite solar cells. <i>Light: Science and Applications</i> , 2021 , 10, 219	16.7	5
23	Plasmonic Materials: A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University (Adv. Mater. 36/2012). <i>Advanced Materials</i> , 2012 , 24, 4774-4774	24	4
22	Electronic structure and optical properties of metallic nanoshells 2003 , 5221, 151		4
21	Surface structure and electron density dependence of scattered Ne+ ion fractions from the Si(100)-(21) surface. <i>Surface Science</i> , 2001 , 470, 255-264	1.8	4
20	Charge-transfer processes in collisions of H+ ions with phosphorus atoms at low energies. <i>Physical Review A</i> , 1999 , 59, 405-411	2.6	4
19	Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations. <i>Nano Letters</i> , 2021 , 21, 2658-2665	11.5	4
18	Coupling of nanoparticle plasmons with molecular linkers 2011,		3
17	Hartree approximation III: Symmetry breaking. <i>Journal of Mathematical Physics</i> , 2001 , 42, 3424-3438	1.2	3
16	LIFETIMES OF ATOMIC STATES NEAR SURFACES. Advanced Series in Physical Chemistry, 1995, 347-368		3
15	Optical Properties of Metallic Nanoparticle Arrays for Oblique Excitation Using the Multiple Unit Cell Method. <i>Journal of Computational and Theoretical Nanoscience</i> , 2009 , 6, 2031-2039	0.3	2
14	Plasmon-enhanced terahertz near-field microscopy 2007 ,		2
13	Optical properties of metallic nanoshells 2002 , 4810, 91		2
12	Non-adiabatic effects in charge transfer caused by electron correlation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 100, 260-266	1.2	2
11	A density-functional study of cluster reactivity. III. NH3 on a free Ga5As+5 cationic cluster. <i>Journal of Chemical Physics</i> , 1996 , 104, 1477-1482	3.9	2

10	Dependence of alignment and orientation induced by grazing-incidence and beam-foil electron-exchange interactions on surface electronic structure. <i>Surface Science</i> , 1989 , 211-212, 198-20	6 ^{1.8}	2
9	Theoretical studies of molecular adsorption on metal surfaces. <i>International Journal of Quantum Chemistry</i> , 1983 , 23, 1083-1090	2.1	2
8	Aluminum Nanocrystals Grow into Distinct Branched Aluminum Nanowire Morphologies. <i>Nano Letters</i> , 2020 , 20, 6644-6650	11.5	2
7	Vacuum ultraviolet nonlinear metalens <i>Science Advances</i> , 2022 , 8, eabn5644	14.3	2
6	Prediction of structure-dependent charge transfer rates for a Li atom outside a Si(0 0 1) surface. <i>Surface Science</i> , 2007 , 601, L29-L33	1.8	1
5	Hartree approximation II: The thermodynamic limit. <i>Journal of Mathematical Physics</i> , 2001 , 42, 3407-34	23.2	1
4	Recent developements in charge-transfer theory. <i>Progress in Surface Science</i> , 1996 , 53, 265-272	6.6	1
3	Physisorption interaction of H2 with simple metals. <i>Surface Science Letters</i> , 1986 , 175, L753-L758		1
2	Summary Abstract: The barrier to oxygen penetration on transition-metal oxide surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1988 , 6, 1081-1082	2.9	1
1	Calculating Barriers to Oxygen Penetration on Metal Oxides with the Effective-Medium Theory. Materials Research Society Symposia Proceedings, 1988, 141, 279		