Peter Nordlander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177352/publications.pdf

Version: 2024-02-01

432 papers

75,609 citations

132 h-index 268 g-index

437 all docs 437 docs citations

437 times ranked

40414 citing authors

#	Article	IF	CITATIONS
1	A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science, 2003, 302, 419-422.	12.6	3,531
2	The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9, 707-715.	27.5	3,352
3	Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 2011, 111, 3913-3961.	47.7	2,663
4	Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 2015, 10, 25-34.	31.5	2,564
5	Photodetection with Active Optical Antennas. Science, 2011, 332, 702-704.	12.6	1,760
6	Plasmon Hybridization in Nanoparticle Dimers. Nano Letters, 2004, 4, 899-903.	9.1	1,538
7	Unraveling Nanotubes: Field Emission from an Atomic Wire. Science, 1995, 269, 1550-1553.	12.6	1,525
8	Self-Assembled Plasmonic Nanoparticle Clusters. Science, 2010, 328, 1135-1138.	12.6	1,362
9	Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H ₂ on Au. Nano Letters, 2013, 13, 240-247.	9.1	1,332
10	Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Letters, 2005, 5, 1569-1574.	9.1	1,070
11	Solar Vapor Generation Enabled by Nanoparticles. ACS Nano, 2013, 7, 42-49.	14.6	1,053
12	Aluminum for Plasmonics. ACS Nano, 2014, 8, 834-840.	14.6	1,018
13	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
14	Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Letters, 2008, 8, 3983-3988.	9.1	954
15	Plasmon Resonances of a Gold Nanostar. Nano Letters, 2007, 7, 729-732.	9.1	838
16	Bridging quantum and classical plasmonics with a quantum-corrected model. Nature Communications, 2012, 3, 825.	12.8	797
17	Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer. Nano Letters, 2009, 9, 887-891.	9.1	781
18	Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science, 2018, 362, 69-72.	12.6	756

#	Article	IF	Citations
19	Nanorice:  A Hybrid Plasmonic Nanostructure. Nano Letters, 2006, 6, 827-832.	9.1	742
20	Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption. ACS Nano, 2008, 2, 707-718.	14.6	730
21	Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 2009, 9, 1663-1667.	9.1	665
22	Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Letters, 2011, 11, 1657-1663.	9.1	649
23	Plasmon-Induced Hot Carriers in Metallic Nanoparticles. ACS Nano, 2014, 8, 7630-7638.	14.6	638
24	Plasmonic Nanostructures:  Artificial Molecules. Accounts of Chemical Research, 2007, 40, 53-62.	15.6	635
25	Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano, 2013, 7, 2388-2395.	14.6	622
26	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, .	48.7	620
27	Graphene-Antenna Sandwich Photodetector. Nano Letters, 2012, 12, 3808-3813.	9.1	615
28	Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications, 2016, 7, 11495.	12.8	605
29	Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability. Nano Letters, 2010, 10, 3184-3189.	9.1	601
30	Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Letters, 2014, 14, 299-304.	9.1	565
31	Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Communications, 2013, 4, 1643.	12.8	552
32	Plexcitonic Nanoparticles: Plasmonâ^Exciton Coupling in Nanoshellâ^J-Aggregate Complexes. Nano Letters, 2008, 8, 3481-3487.	9.1	523
33	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	21.0	516
34	Plasmon hybridization in spherical nanoparticles. Journal of Chemical Physics, 2004, 120, 5444-5454.	3.0	498
35	Aluminum Plasmonic Nanoantennas. Nano Letters, 2012, 12, 6000-6004.	9.1	497
36	Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing. ACS Nano, 2009, 3, 643-652.	14.6	469

#	Article	IF	CITATIONS
37	Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nature Energy, 2020, 5, 61-70.	39.5	466
38	Close Encounters between Two Nanoshells. Nano Letters, 2008, 8, 1212-1218.	9.1	462
39	Hot-Electron-Induced Dissociation of H ₂ on Gold Nanoparticles Supported on SiO ₂ . Journal of the American Chemical Society, 2014, 136, 64-67.	13.7	458
40	Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers. Nano Letters, 2013, 13, 3281-3286.	9.1	445
41	Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Letters, 2012, 12, 1660-1667.	9.1	442
42	Quantum Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer. Nano Letters, 2012, 12, 1333-1339.	9.1	424
43	Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs. ACS Nano, 2010, 4, 819-832.	14.6	422
44	Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11677-11681.	7.1	421
45	Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle. Nano Letters, 2009, 9, 2188-2192.	9.1	414
46	Hydrogen adsorption on metal surfaces. Surface Science, 1984, 136, 59-81.	1.9	400
47	Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Letters, 2013, 13, 1736-1742.	9.1	394
48	Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities. ACS Nano, 2010, 4, 1664-1670.	14.6	390
49	Heterometallic antennaâ^'reactor complexes for photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8916-8920.	7.1	381
50	Nanoparticles Heat through Light Localization. Nano Letters, 2014, 14, 4640-4645.	9.1	379
51	Plasmon-Induced Doping of Graphene. ACS Nano, 2012, 6, 10222-10228.	14.6	356
52	Quantum Plexcitonics: Strongly Interacting Plasmons and Excitons. Nano Letters, 2011, 11, 2318-2323.	9.1	354
53	Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6936-6941.	7.1	348
54	Fano-like Interference in Self-Assembled Plasmonic Quadrumer Clusters. Nano Letters, 2010, 10, 4680-4685.	9.1	343

#	Article	IF	CITATIONS
55	A Plasmonic Fano Switch. Nano Letters, 2012, 12, 4977-4982.	9.1	342
56	Magneticâ^'Plasmonic Coreâ^'Shell Nanoparticles. ACS Nano, 2009, 3, 1379-1388.	14.6	337
57	Light-Induced Release of DNA from Gold Nanoparticles: Nanoshells and Nanorods. Journal of the American Chemical Society, 2011, 133, 12247-12255.	13.7	334
58	Plasmon Hybridization in Nanoparticles near Metallic Surfaces. Nano Letters, 2004, 4, 2209-2213.	9.1	332
59	Electron Energy-Loss Spectroscopy (EELS) of Surface Plasmons in Single Silver Nanoparticles and Dimers: Influence of Beam Damage and Mapping of Dark Modes. ACS Nano, 2009, 3, 3015-3022.	14.6	322
60	On the Energy Shift between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems. Nano Letters, 2011, 11, 1280-1283.	9.1	321
61	Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications, 2015, 6, 7797.	12.8	311
62	Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nature Communications, 2017, 8, 27.	12.8	308
63	Mechanisms of Fano Resonances in Coupled Plasmonic Systems. ACS Nano, 2013, 7, 4527-4536.	14.6	304
64	Fano Resonances in Plasmonic Nanoparticle Aggregates. Journal of Physical Chemistry A, 2009, 113, 4028-4034.	2.5	302
65	Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method. Journal of Physical Chemistry B, 2004, 108, 17740-17747.	2.6	296
66	Electromigrated Nanoscale Gaps for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2007, 7, 1396-1400.	9.1	295
67	Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation. Nano Letters, 2016, 16, 1478-1484.	9.1	294
68	Fanoshells: Nanoparticles with Built-in Fano Resonances. Nano Letters, 2010, 10, 2694-2701.	9.1	288
69	Embedding Plasmonic Nanostructure Diodes Enhances Hot Electron Emission. Nano Letters, 2013, 13, 1687-1692.	9.1	283
70	Symmetry breaking in individual plasmonic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10856-10860.	7.1	270
71	Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions. Nano Letters, 2008, 8, 919-924.	9.1	270
72	Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe ₂ . Nano Letters, 2017, 17, 3809-3814.	9.1	270

#	Article	IF	Citations
73	Vivid, full-color aluminum plasmonic pixels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14348-14353.	7.1	269
74	Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticleâ^'Nanowire Systems. Nano Letters, 2008, 8, 2497-2502.	9.1	268
75	Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks. Nano Letters, 2011, 11, 471-475.	9.1	267
76	Branched Silver Nanowires as Controllable Plasmon Routers. Nano Letters, 2010, 10, 1950-1954.	9.1	264
77	Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nature Communications, 2014, 5, 4424.	12.8	252
78	Electronic Structure and Optical Properties of Gold Nanoshells. Nano Letters, 2003, 3, 1411-1415.	9.1	248
79	Structural Tunability of the Plasmon Resonances in Metallic Nanoshells. Nano Letters, 2003, 3, 543-547.	9.1	245
80	Plasmon Modes of Nanosphere Trimers and Quadrumers. Journal of Physical Chemistry B, 2006, 110, 12302-12310.	2.6	236
81	Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. Nano Letters, 2017, 17, 6034-6039.	9.1	235
82	Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA). Nano Letters, 2015, 15, 1272-1280.	9.1	227
83	Chiral Surface Plasmon Polaritons on Metallic Nanowires. Physical Review Letters, 2011, 107, 096801.	7.8	225
84	Quantum Plasmonics: Optical Properties and Tunability of Metallic Nanorods. ACS Nano, 2010, 4, 5269-5276.	14.6	224
85	Energy shifts and broadening of atomic levels near metal surfaces. Physical Review B, 1990, 42, 5564-5578.	3.2	223
86	Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities. Nano Letters, 2010, 10, 3090-3095.	9.1	221
87	Shedding light on dark plasmons in gold nanorings. Chemical Physics Letters, 2008, 458, 262-266.	2.6	215
88	Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka. Journal of Physical Chemistry C, 2010, 114, 7378-7383.	3.1	214
89	Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers. Journal of Physical Chemistry B, 2005, 109, 10042-10051.	2.6	213
90	Surface-Enhanced Infrared Absorption Using Individual Cross Antennas Tailored to Chemical Moieties. Journal of the American Chemical Society, 2013, 135, 3688-3695.	13.7	212

#	Article	IF	Citations
91	Effects of Symmetry Breaking and Conductive Contact on the Plasmon Coupling in Gold Nanorod Dimers. ACS Nano, 2010, 4, 4657-4666.	14.6	211
92	Nanoparticle-Mediated Coupling of Light into a Nanowire. Nano Letters, 2007, 7, 2346-2350.	9.1	210
93	Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chemical Physics Letters, 2008, 452, 115-119.	2.6	210
94	Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons. Nano Letters, 2009, 9, 2049-2053.	9.1	209
95	Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. ACS Nano, 2015, 9, 10628-10636.	14.6	209
96	Unidirectional Broadband Light Emission from Supported Plasmonic Nanowires. Nano Letters, 2011, 11, 706-711.	9.1	205
97	Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters. Nano Letters, 2012, 12, 1058-1062.	9.1	205
98	Energy Shifts and Broadening of Excited Hydrogen-Atom Levels in the Vicinity of a Metal Surface. Physical Review Letters, 1988, 61, 990-993.	7.8	203
99	Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna–Reactor Plasmonic Photocatalysis. Nano Letters, 2017, 17, 3710-3717.	9.1	202
100	Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chemical Physics Letters, 2007, 446, 115-118.	2.6	201
101	Robust Subnanometric Plasmon Ruler by Rescaling of the Nonlocal Optical Response. Physical Review Letters, 2013, 110, 263901.	7.8	198
102	Al–Pd Nanodisk Heterodimers as Antenna–Reactor Photocatalysts. Nano Letters, 2016, 16, 6677-6682.	9.1	196
103	Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chemical Physics Letters, 2004, 399, 167-171.	2.6	190
104	Removing a Wedge from a Metallic Nanodisk Reveals a Fano Resonance. Nano Letters, 2011, 11, 4475-4479.	9.1	190
105	Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9215-9219.	7.1	190
106	Active Light Control of the MoS ₂ Monolayer Exciton Binding Energy. ACS Nano, 2015, 9, 10158-10164.	14.6	190
107	Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14, 2926-2933.	9.1	188
108	Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. Nano Letters, 2017, 17, 5768-5774.	9.1	187

#	Article	IF	CITATIONS
109	Breaking individual chemical bonds via STM-induced excitations. Surface Science, 1996, 363, 368-377.	1.9	182
110	Colorâ€Selective and CMOSâ€Compatible Photodetection Based on Aluminum Plasmonics. Advanced Materials, 2014, 26, 6318-6323.	21.0	178
111	Derivation of a master equation for charge-transfer processes in atom-surface collisions. Physical Review B, 1991, 43, 2541-2557.	3.2	174
112	Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Letters, 2017, 17, 5071-5077.	9.1	173
113	Aluminum Nanocrystals. Nano Letters, 2015, 15, 2751-2755.	9.1	169
114	Three-Dimensional Plasmonic Nanoclusters. Nano Letters, 2013, 13, 4399-4403.	9.1	168
115	Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. Journal of Physical Chemistry Letters, 2014, 5, 370-374.	4.6	166
116	The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chemical Physics Letters, 2002, 360, 325-332.	2.6	165
117	Controlled Texturing Modifies the Surface Topography and Plasmonic Properties of Au Nanoshells. Journal of Physical Chemistry B, 2005, 109, 11083-11087.	2.6	163
118	Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets. Nano Letters, 2014, 14, 3674-3682.	9.1	153
119	High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. ACS Nano, 2016, 10, 1108-1117.	14.6	153
120	A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discussions, 2015, 178, 151-183.	3.2	151
121	Plasmons in the Metallic Nanoparticleâ^'Film System as a Tunable Impurity Problem. Nano Letters, 2005, 5, 2009-2013.	9.1	149
122	A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology, 2010, 21, 255503.	2.6	149
123	Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Optics Express, 2013, 21, 27306.	3.4	149
124	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Letters, 2015, 15, 6946-6951.	9.1	149
125	The Surprising <i>in Vivo</i> Instability of Near-IR-Absorbing Hollow Au–Ag Nanoshells. ACS Nano, 2014, 8, 3222-3231.	14.6	148
126	Multipolar Plasmon Resonances in Individual Ag Nanorice. ACS Nano, 2010, 4, 2649-2654.	14.6	146

#	Article	IF	Citations
127	From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Science Advances, 2015, 1, e1500988.	10.3	146
128	Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides. Nano Letters, 2010, 10, 1831-1835.	9.1	144
129	Plasmonic nanoclusters: a path towards negative-index metafluids. Optics Express, 2007, 15, 14129.	3.4	143
130	Plasmonic Focusing in Symmetry Broken Nanocorrals. Nano Letters, 2011, 11, 893-897.	9.1	141
131	Directional Light Emission from Propagating Surface Plasmons of Silver Nanowires. Nano Letters, 2009, 9, 4383-4386.	9.1	139
132	Hot Hole Photoelectrochemistry on Au@SiO ₂ @Au Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 2060-2067.	4.6	137
133	DNA-Enabled Self-Assembly of Plasmonic Nanoclusters. Nano Letters, 2011, 11, 4859-4864.	9.1	136
134	Plasmon-Mediated Catalytic O ₂ Dissociation on Ag Nanostructures: Hot Electrons or Near Fields?. ACS Energy Letters, 2019, 4, 1803-1809.	17.4	136
135	Optical Properties of a Nanosized Hole in a Thin Metallic Film. ACS Nano, 2008, 2, 25-32.	14.6	133
136	Probing the Plasmonic Near-Field of Gold Nanocrescent Antennas. ACS Nano, 2010, 4, 6639-6650.	14.6	133
137	Noble Metal Nanowires: From Plasmon Waveguides to Passive and Active Devices. Accounts of Chemical Research, 2012, 45, 1887-1895.	15.6	133
138	Response to Comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysisâ€. Science, 2019, 364, .	12.6	131
139	How Long Does It Take for the Kondo Effect to Develop?. Physical Review Letters, 1999, 83, 808-811.	7.8	129
140	Real-Space Mapping of Fano Interference in Plasmonic Metamolecules. Nano Letters, 2011, 11, 3922-3926.	9.1	129
141	Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Physical Review B, 2007, 76, .	3.2	128
142	Tunable wide-angle plasmonic perfect absorber at visible frequencies. Physical Review B, 2012, 85, .	3.2	125
143	Fano resonances in planar silver nanosphere clusters. Applied Physics A: Materials Science and Processing, 2010, 100, 333-339.	2.3	123
144	Effects of dielectric screening on the optical properties of metallic nanoshells. Chemical Physics Letters, 2003, 368, 94-101.	2.6	121

#	Article	IF	CITATIONS
145	Plasmon hybridization in nanorod dimers. Applied Physics B: Lasers and Optics, 2008, 93, 209-216.	2.2	119
146	Magnetic Plasmon Formation and Propagation in Artificial Aromatic Molecules. Nano Letters, 2012, 12, 364-369.	9.1	119
147	Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core–Shell Junction to Subnanometer. Nano Letters, 2015, 15, 6419-6428.	9.1	119
148	Electronic structure of small GaAs clusters. Journal of Chemical Physics, 1991, 94, 8015-8020.	3.0	118
149	Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. ACS Nano, 2015, 9, 6428-6435.	14.6	115
150	Relaxation of Plasmon-Induced Hot Carriers. ACS Photonics, 2018, 5, 2584-2595.	6.6	115
151	Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers. ACS Nano, 2018, 12, 976-985.	14.6	113
152	Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substrates. Journal of Physical Chemistry C, 2010, 114, 7302-7307.	3.1	111
153	Individual Nanoantennas Loaded with Three-Dimensional Optical Nanocircuits. Nano Letters, 2013, 13, 142-147.	9.1	111
154	Plasmonic Mode Engineering with Templated Self-Assembled Nanoclusters. Nano Letters, 2012, 12, 5318-5324.	9.1	108
155	Plasmonic Radiance: Probing Structure at the \tilde{A} ngstr \tilde{A} ¶m Scale with Visible Light. Nano Letters, 2013, 13, 497-503.	9.1	108
156	Electronic structure of small GaAs clusters. II. Journal of Chemical Physics, 1992, 97, 1858-1864.	3.0	107
157	Nanoparticle-Mediated, Light-Induced Phase Separations. Nano Letters, 2015, 15, 7880-7885.	9.1	107
158	Asymmetric Aluminum Antennas for Self-Calibrating Surface-Enhanced Infrared Absorption Spectroscopy. ACS Photonics, 2016, 3, 354-360.	6.6	107
159	Theoretical examination of the trapping of ion-implanted hydrogen in metals. Physical Review B, 1986, 33, 854-863.	3.2	106
160	The Ring: A Leitmotif in Plasmonics. ACS Nano, 2009, 3, 488-492.	14.6	106
161	Multiple hydrogen occupancy of vacancies in Fe. Journal of Applied Physics, 1987, 61, 1788-1794.	2.5	104
162	The interaction of helium with smooth metal surfaces. Journal of Physics C: Solid State Physics, 1984, 17, 1141-1152.	1.5	103

#	Article	lF	CITATIONS
163	Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. Nano Letters, 2020, 20, 2087-2093.	9.1	102
164	Trends in hydrogen heats of solution and vacancy trapping energies in transition metals. Journal of Physics F: Metal Physics, 1986, 16, 1161-1171.	1.6	101
165	Tunable Molecular Plasmons in Polycyclic Aromatic Hydrocarbons. ACS Nano, 2013, 7, 3635-3643.	14.6	101
166	The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics, 2015, 2, 295-305.	6.6	99
167	Multicolor Electrochromic Devices Based on Molecular Plasmonics. ACS Nano, 2017, 11, 3254-3261.	14.6	97
168	Plasmon hybridization in nanoshell dimers. Journal of Chemical Physics, 2005, 123, 024701.	3.0	95
169	Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups. ACS Nano, 2011, 5, 7254-7262.	14.6	95
170	Fullerene nanotubes in electric fields. Physical Review B, 1995, 52, 1429-1432.	3.2	94
171	A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University. Advanced Materials, 2012, 24, 4842-4877.	21.0	94
172	Toroidal Dipole-Enhanced Third Harmonic Generation of Deep Ultraviolet Light Using Plasmonic Meta-atoms. Nano Letters, 2019, 19, 605-611.	9.1	94
173	Multiple deuterium occupancy of vacancies in Pd and related metals. Physical Review B, 1989, 40, 1990-1992.	3.2	92
174	Manipulating Magnetic Plasmon Propagation in Metallic Nanocluster Networks. ACS Nano, 2012, 6, 5482-5488.	14.6	92
175	Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. Nano Letters, 2016, 16, 5183-5190.	9.1	92
176	Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. Journal of Chemical Physics, 2011, 134, 074701.	3.0	91
177	Combining Plasmonic Hot Carrier Generation with Free Carrier Absorption for High-Performance Near-Infrared Silicon-Based Photodetection. ACS Photonics, 2018, 5, 3472-3477.	6.6	91
178	Quantum Plasmonics: Optical Properties of a Nanomatryushka. Nano Letters, 2013, 13, 5873-5879.	9.1	88
179	Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. ACS Nano, 2016, 10, 6180-6188.	14.6	88
180	Photoelectron spectroscopy of transition-metal clusters: Correlation of valence electronic structure to reactivity. Physical Review B, 1995, 51, 4668-4671.	3.2	87

#	Article	IF	CITATIONS
181	Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Applied Physics B: Lasers and Optics, 2006, 84, 35-41.	2.2	87
182	Plasmon hybridization in nanoshells with a nonconcentric core. Journal of Chemical Physics, 2006, 125, 124708.	3.0	87
183	Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. ACS Nano, 2015, 9, 5968-5975.	14.6	87
184	Bethe-hole polarization analyser for the magnetic vector of light. Nature Communications, 2011, 2, 451.	12.8	83
185	Plasmonic Photocatalysis of Nitrous Oxide into N ₂ and O ₂ Using Aluminum–Iridium Antenna–Reactor Nanoparticles. ACS Nano, 2019, 13, 8076-8086.	14.6	83
186	Vacuum Ultraviolet Light-Generating Metasurface. Nano Letters, 2018, 18, 5738-5743.	9.1	82
187	Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nature Catalysis, 2020, 3, 564-573.	34.4	81
188	Molecular Plasmonics. Nano Letters, 2015, 15, 6208-6214.	9.1	80
189	Lifetimes of negative-ion states near metal surfaces. Physical Review B, 1992, 46, 2584-2590.	3.2	78
190	Lifetimes of excited atoms near metal surfaces. Surface Science, 1989, 211-212, 207-217.	1.9	76
191	Transition-Metal Decorated Aluminum Nanocrystals. ACS Nano, 2017, 11, 10281-10288.	14.6	76
192	Many-body theory for charge transfer in atom-surface collisions. Physical Review B, 1994, 49, 13929-13947.	3.2	75
193	Enhancing T ₁ magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6960-6965.	7.1	75
194	Coherent Modulation of Propagating Plasmons in Silverâ€Nanowireâ€Based Structures. Small, 2011, 7, 593-596.	10.0	74
195	Solar thermal desalination as a nonlinear optical process. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13182-13187.	7.1	74
196	Metal-organic frameworks tailor the properties of aluminum nanocrystals. Science Advances, 2019, 5, eaav5340.	10.3	74
197	Plasmon Transmutation: Inducing New Modes in Nanoclusters by Adding Dielectric Nanoparticles. Nano Letters, 2012, 12, 5020-5026.	9.1	73
198	How To Identify Plasmons from the Optical Response of Nanostructures. ACS Nano, 2017, 11, 7321-7335.	14.6	72

#	Article	IF	CITATIONS
199	Ionization of Xenon Rydberg Atoms at a Metal Surface. Physical Review Letters, 2000, 85, 5444-5447.	7.8	71
200	Plasmonic interactions between a metallic nanoshell and a thin metallic film. Physical Review B, 2007, 76, .	3.2	71
201	Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. ACS Nano, 2019, 13, 3117-3124.	14.6	71
202	Physisorption interaction of H2 with noble metals. Surface Science, 1985, 152-153, 702-709.	1.9	70
203	Bleach-Imaged Plasmon Propagation (BIIPP) in Single Gold Nanowires. Nano Letters, 2010, 10, 3482-3485.	9.1	70
204	Electronic structure and polarizability of metallic nanoshells. Chemical Physics Letters, 2002, 352, 140-146.	2.6	69
205	Aluminum Nanorods. Nano Letters, 2018, 18, 1234-1240.	9.1	69
206	Generating Third Harmonic Vacuum Ultraviolet Light with a TiO ₂ Metasurface. Nano Letters, 2019, 19, 8972-8978.	9.1	69
207	Morphology-Dependent Reactivity of a Plasmonic Photocatalyst. ACS Nano, 2020, 14, 12054-12063.	14.6	69
208	Effect of a proximal substrate on plasmon propagation in silver nanowires. Physical Review B, 2010, 82,	3.2	67
209	Active quantum plasmonics. Science Advances, 2015, 1, e1501095.	10.3	66
210	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nature Communications, 2015, 6, 7022.	12.8	65
211	Energy shifts and broadening of atomic electron levels near impurity-covered metal surfaces. Physical Review B, 1991, 44, 13681-13688.	3.2	64
212	Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances. Nano Letters, 2012, 12, 4881-4888.	9.1	64
213	Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package. ACS Photonics, 2015, 2, 369-375.	6.6	64
214	Aluminum Nanocubes Have Sharp Corners. ACS Nano, 2019, 13, 9682-9691.	14.6	63
215	Kondo physics in the single-electron transistor with ac driving. Physical Review B, 2000, 61, 2146-2150.	3.2	61
216	Plasmonic coupling between a metallic nanosphere and a thin metallic wire. Applied Physics Letters, 2006, 89, 103101.	3.3	61

#	Article	IF	Citations
217	Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy. Nano Letters, 2012, 12, 2817-2821.	9.1	61
218	Photoinduced Force Mapping of Plasmonic Nanostructures. Nano Letters, 2016, 16, 7942-7949.	9.1	61
219	Combining Solar Steam Processing and Solar Distillation for Fully Off-Grid Production of Cellulosic Bioethanol. ACS Energy Letters, 2017, 2, 8-13.	17.4	61
220	Plasmon Blockade in Nanostructured Graphene. ACS Nano, 2012, 6, 1724-1731.	14.6	60
221	Theory of Quantum Plasmon Resonances in Doped Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 16035-16042.	3.1	60
222	Vibrational autodetachment spectroscopy of Auâ^6: Imageâ€chargeâ€bound states of a gold ring. Journal of Chemical Physics, 1990, 93, 7515-7518.	3.0	59
223	Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission. ACS Nano, 2020, 14, 15757-15765.	14.6	59
224	Identification of Higher Order Long-Propagation-Length Surface Plasmon Polariton Modes in Chemically Prepared Gold Nanowires. ACS Nano, 2012, 6, 8105-8113.	14.6	58
225	Anti-Stokes Emission from Hot Carriers in Gold Nanorods. Nano Letters, 2019, 19, 1067-1073.	9.1	58
226	Indirect electronic interaction between hydrogen atoms adsorbed on metals. Surface Science, 1985, 159, 443-465.	1.9	57
227	Vacuum ultraviolet nonlinear metalens. Science Advances, 2022, 8, eabn5644.	10.3	57
228	A Tunable Plasmon Resonance in Gold Nanobelts. Nano Letters, 2011, 11, 5034-5037.	9.1	56
229	Polymer-Directed Growth of Plasmonic Aluminum Nanocrystals. Journal of the American Chemical Society, 2018, 140, 15412-15418.	13.7	55
230	Kondo time scales for quantum dots: Response to pulsed bias potentials. Physical Review B, 2000, 61, R13341-R13344.	3.2	52
231	Formation of excited hydrogen states in stimulated desorption from an alkali-promoted surface. Physical Review Letters, 1990, 64, 942-945.	7.8	51
232	Terahertz transmission properties of an individual slit in a thin metallic plate. Optics Express, 2009, 17, 12660.	3.4	51
233	High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps. ACS Nano, 2015, 9, 9331-9339.	14.6	51
234	Electron Energy-Loss Spectroscopy of Multipolar Edge and Cavity Modes in Silver Nanosquares. ACS Photonics, 2016, 3, 428-433.	6.6	51

#	Article	IF	Citations
235	Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source. Nano Letters, 2016, 16, 3373-3378.	9.1	50
236	Optomechanics of Single Aluminum Nanodisks. Nano Letters, 2017, 17, 2575-2583.	9.1	50
237	Vibrational coupling in plasmonic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11621-11626.	7.1	49
238	Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. Nature Photonics, 2020, 14, 723-727.	31.4	48
239	Al@TiO ₂ Core–Shell Nanoparticles for Plasmonic Photocatalysis. ACS Nano, 2022, 16, 5839-5850.	14.6	48
240	Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Letters, 2019, 19, 3838-3845.	9.1	47
241	Energies and lifetimes of atomic Rydberg states near metal surfaces. Physical Review B, 1996, 53, 4125-4132.	3.2	46
242	Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides. Journal of Physical Chemistry B, 2002, 106, 5609-5612.	2.6	46
243	Perforated Semishells: Far-Field Directional Control and Optical Frequency Magnetic Response. ACS Nano, 2010, 4, 2701-2712.	14.6	46
244	Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. Journal of the American Chemical Society, 2019, 141, 1716-1724.	13.7	45
245	Electronic structure of the hollowâ€cage M8X12 clusters. Journal of Chemical Physics, 1993, 99, 5301-5305.	3.0	44
246	Wavelength-Dependent Optical Force Imaging of Bimetallic Al–Au Heterodimers. Nano Letters, 2018, 18, 2040-2046.	9.1	44
247	Doped Silicon Nanocrystal Plasmonics. ACS Photonics, 2017, 4, 963-970.	6.6	43
248	Hot carrier multiplication in plasmonic photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
249	Electron-stimulated desorption of neutral lithium atoms from LiF due to excitation of surface excitons. Physical Review B, 1991, 43, 6729-6732.	3.2	42
250	Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects. Journal of Physical Chemistry Letters, 2017, 8, 2681-2688.	4.6	41
251	Adsorbate-Induced Quenching of Hot Electrons in Gold Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 9913-9917.	2.6	40
252	Influence of Cross Sectional Geometry on Surface Plasmon Polariton Propagation in Gold Nanowires. ACS Nano, 2014, 8, 572-580.	14.6	40

#	Article	IF	CITATIONS
253	Formation of long-lived C60â^' ions in Rydberg atom-C60 collisions. Chemical Physics Letters, 1995, 244, 345-349.	2.6	39
254	Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. ACS Energy Letters, 2019, 4, 2458-2465.	17.4	39
255	Ultrafast Electron Dynamics in Single Aluminum Nanostructures. Nano Letters, 2019, 19, 3091-3097.	9.1	39
256	Wavelet based in eigenvalue problems in quantum mechanics. Chemical Physics Letters, 1996, 250, 485-494.	2.6	38
257	Plasmon modes of curvilinear metallic core/shell particles. Journal of Chemical Physics, 2007, 126, 144708.	3.0	38
258	Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions. Nano Letters, 2020, 20, 6067-6075.	9.1	38
259	Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems. Nano Letters, 2021, 21, 1083-1089.	9.1	38
260	The Interaction of H2With Metal Surfaces. Physica Scripta, 1986, T13, 155-160.	2.5	37
261	The effects of an external electric field on the adatom-surface bond: H and Al adsorbed on Si(111). Surface Science, 1997, 372, 9-20.	1.9	37
262	Multielectron effects in the interaction of Fa $^{\circ}$ ions with Ag(110). Surface Science, 1998, 415, L1027-L1031.	1.9	37
263	Plasmonic properties of a metallic torus. Journal of Chemical Physics, 2008, 129, 084706.	3.0	37
264	On the nature of the bonding and antibonding metallic film and nanoshell plasmons. Chemical Physics Letters, 2009, 472, 228-231.	2.6	37
265	Absorption Spectroscopy of an Individual Fano Cluster. Nano Letters, 2016, 16, 6497-6503.	9.1	37
266	Atomic Scale Photodetection Enabled by a Memristive Junction. ACS Nano, 2018, 12, 6706-6713.	14.6	37
267	Routes to Potentially Safer <i>T</i> ₁ Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence. ACS Nano, 2018, 12, 8214-8223.	14.6	37
268	Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties. Chemical Science, 2011, 2, 2392.	7.4	35
269	On the binding of electrons to CS2: Possible role of quadrupole-bound states. Chemical Physics Letters, 1996, 253, 8-12.	2.6	34
270	Transient currents and universal time scales for a fully time-dependent quantum dot in the Kondo regime. Physical Review B, 2005, 71, .	3.2	34

#	Article	IF	Citations
271	Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance. ACS Nano, 2016, 10, 6972-6979.	14.6	34
272	Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles. ACS Nano, 2016, 10, 4835-4846.	14.6	34
273	Plasmon Energy Transfer in Hybrid Nanoantennas. ACS Nano, 2021, 15, 9522-9530.	14.6	34
274	Site-Selective Nanoreactor Deposition on Photocatalytic Al Nanocubes. Nano Letters, 2020, 20, 4550-4557.	9.1	34
275	Angular dependence of charge-transfer probabilities between Oâ^'and a Ni $\{100\}$ -c(2×2)-O surface. Physical Review Letters, 1992, 69, 188-191.	7.8	33
276	Dye-Assisted Gain of Strongly Confined Surface Plasmon Polaritons in Silver Nanowires. Nano Letters, 2014, 14, 3628-3633.	9.1	33
277	Resonant energy transfer enhances solar thermal desalination. Energy and Environmental Science, 2020, 13, 968-976.	30.8	33
278	Interaction of Rydberg atoms with a metal surface in the presence of an external electric field. Physical Review B, 1996, 53, 8083-8089.	3.2	32
279	Quadrature integration for orthogonal wavelet systems. Journal of Chemical Physics, 1999, 110, 8309-8317.	3.0	32
280	Photocatalytic Hydrogenation of Graphene Using Pd Nanocones. Nano Letters, 2019, 19, 4413-4419.	9.1	32
281	Time-of-flight scattering and recoiling spectrometry. III. The structure of hydrogen on the W(211) surface. Physical Review B, 1989, 40, 10163-10180.	3.2	31
282	Probing the Highly Correlated Mixed-Valent State via Charge Transfer with Atoms Moving Out from a Surface. Physical Review Letters, 1996, 77, 948-951.	7.8	30
283	Orienting Nanoantennas in Three Dimensions To Control Light Scattering Across a Dielectric Interface. Nano Letters, 2013, 13, 5997-6001.	9.1	30
284	Environmental Symmetry Breaking Promotes Plasmon Mode Splitting in Gold Nanotriangles. Journal of Physical Chemistry C, 2018, 122, 13259-13266.	3.1	30
285	Lifetime dynamics of plasmons in the few-atom limit. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9134-9139.	7.1	30
286	Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 219.	16.6	30
287	Extended $H\tilde{A}\frac{1}{4}$ ckel theory for ionic molecules and solids: An application to alkali halides. Journal of Chemical Physics, 1988, 89, 4163-4169.	3.0	29
288	Determination of the structure of hydrogen on a $W(211)$ surface. Physical Review Letters, 1989, 63, 1408-1411.	7.8	29

#	Article	IF	CITATIONS
289	Spin-dependent studies of the dynamics of He+ion neutralization at a Au(100) surface. Physical Review B, 1999, 60, 9082-9089.	3.2	29
290	Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances. Physical Review B, 2012, 86, .	3.2	29
291	Plasmonic Coupling of Multipolar Edge Modes and the Formation of Gap Modes. ACS Photonics, 2017, 4, 1558-1565.	6.6	29
292	Anisotropy of oxygen transport in YBa2Cu3O7: The role of the $[\hat{A}\frac{1}{2}, b, 0]$ tunnels. Physica C: Superconductivity and Its Applications, 1988, 153-155, 834-835.	1.2	28
293	Theoretical description of quasiresonant charge exchange in atom-surface collisions. Physical Review B, 1994, 49, 13948-13965.	3.2	28
294	A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients. ACS Nano, 2021, 15, 8761-8769.	14.6	28
295	Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters, 2020, 20, 3499-3505.	9.1	27
296	Behavior of Rydberg atoms at surfaces: energy level shifts and ionization. Nuclear Instruments & Methods in Physics Research B, 2003, 203, 69-75.	1.4	26
297	First principles resonance widths for Li near an Al(001) surface: Predictions of scattered ion neutralization probabilities. Journal of Chemical Physics, 2004, 121, 3751-3755.	3.0	26
298	Gold Nanobelts as High Confinement Plasmonic Waveguides. Nano Letters, 2013, 13, 6256-6261.	9.1	26
299	Barrier to oxygen penetration on metal and oxide surfaces. Physical Review B, 1987, 35, 9403-9406.	3.2	25
300	UV-Resonant Al Nanocrystals: Synthesis, Silica Coating, and Broadband Photothermal Response. Nano Letters, 2021, 21, 536-542.	9.1	25
301	Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing. Nanotechnology, 2022, 33, 405201.	2.6	25
302	Potentials for atom-surface scattering. Surface Science, 1983, 126, 675-680.	1.9	24
303	Giant photothermoelectric effect in silicon nanoribbon photodetectors. Light: Science and Applications, 2020, 9, 120.	16.6	24
304	Carbon atomic chains in strong electric fields. Physical Review B, 1996, 54, 16659-16662.	3.2	23
305	Exchange and correlations effects in small metallic nanoshells. Chemical Physics Letters, 2001, 349, 153-160.	2.6	23
306	Tunable plasmon resonances in a metallic nanotip–film system. Nanoscale, 2012, 4, 5931.	5.6	23

#	Article	IF	CITATIONS
307	Low-energy dissociative electron attachment to CFCl3, CF2Br2, and 1,1,1- and 1,1,2-C2Cl3F3: Intermediate lifetimes and decay energetics. Journal of Chemical Physics, 1997, 106, 9594-9601.	3.0	22
308	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	14.6	22
309	Laser-Induced Spectral Hole-Burning through a Broadband Distribution of Au Nanorods. Journal of Physical Chemistry C, 2016, 120, 20518-20524.	3.1	22
310	Calculation of the barrier for oxygen incorporation into metal and metal-oxide surfaces. Physical Review B, 1987, 36, 4982-4989.	3.2	21
311	On the Kohn-Sham Equations with Periodic Background Potentials. Journal of Statistical Physics, 2003, 111, 967-992.	1.2	21
312	Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances. Journal of Physical Chemistry Letters, 2013, 4, 1352-1357.	4.6	21
313	Impurity-Induced Plasmon Damping in Individual Cobalt-Doped Hollow Au Nanoshells. Journal of Physical Chemistry B, 2014, 118, 14056-14061.	2.6	21
314	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330.	9.1	21
315	Interaction of hydrogen isotopes with metals: Deuterium trapped at lattice defects in palladium. Journal of Fusion Energy, 1990, 9, 257-261.	1.2	20
316	Dynamics of metastable-atom deexcitation at metal surfaces. Physical Review B, 1991, 44, 3246-3250.	3.2	20
317	Disintegration of finite carbon chains in electric fields. Chemical Physics Letters, 1997, 264, 345-350.	2.6	20
318	Dynamics of Rydberg atoms near metal surfaces in the presence of an electric field. Surface Science, 1999, 423, L271-L276.	1.9	20
319	The dark side of the ring. Nature Nanotechnology, 2013, 8, 76-77.	31.5	20
320	Molecular Plasmon–Phonon Coupling. Nano Letters, 2016, 16, 6390-6395.	9.1	20
321	Exploiting Evanescent Field Polarization for Giant Chiroptical Modulation from Achiral Gold Half-Rings. ACS Nano, 2018, 12, 11657-11663.	14.6	20
322	Influence of coadsorbed potassium on the electron-stimulated desorption of F+, Fâ^', and F*from PF3 on Ru (0001). Physical Review B, 1992, 45, 14264-14272.	3.2	19
323	All-Optically Reconfigurable Plasmonic Metagrating for Ultrafast Diffraction Management. Nano Letters, 2021, 21, 1345-1351.	9.1	19
324	An endohedral metallocarbohedrene C@Ti8C12. Chemical Physics Letters, 1994, 224, 439-444.	2.6	18

#	Article	IF	Citations
325	Excimer Model for Photoluminescence in Single-Crystal C60. The Journal of Physical Chemistry, 1996, 100, 2854-2861.	2.9	18
326	Interaction of Rydberg atoms with surfaces: Electron tunneling processes. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 300-304.	1.4	18
327	Low-energy dissociative electron attachment to CH2Br2, CHClBr2, and CCl3Br: Intermediate lifetimes and decay energetics. Journal of Chemical Physics, 1998, 109, 8829-8835.	3.0	18
328	Charge-transfer cross sections for radiative charge transfer inNa+H+andK+H+collisions at very low energies. Physical Review A, 2002, 66, .	2. 5	18
329	Mechanism of enhanced broadening of the ionization level of Li outside transition metal surfaces. Physical Review B, 2006, 74, .	3.2	18
330	Hydrated Electron Generation by Excitation of Copper Localized Surface Plasmon Resonance. Journal of Physical Chemistry Letters, 2019, 10, 1743-1749.	4.6	18
331	Nonadiabatic effects in charge transfer in atom-surface scattering. Physical Review B, 1995, 52, 2988-2994.	3.2	17
332	Electron tunneling rates between an atom and a corrugated surface. Physical Review B, 2001, 64, .	3 . 2	17
333	Plasmon Hybridization in Stacked Double Gold Nanorings with Reduced Symmetry. Small, 2008, 4, 1630-1634.	10.0	17
334	Avoided Crossings in the Interaction of a Xe Rydberg Atom with a Metal Surfaceâ€. Journal of Physical Chemistry B, 2002, 106, 8338-8341.	2.6	16
335	Influence of surface band gaps on the lifetimes of charge transfer states. Surface Science, 2006, 600, L291-L295.	1.9	16
336	Transient current in a quantum dot subject to a change in coupling to its leads. Journal of Physics Condensed Matter, 2006, 18, 8995-9006.	1.8	16
337	Virtual Issue on Plasmonics. ACS Nano, 2011, 5, 4245-4248.	14.6	16
338	Molecular Tuning of Quantum Plasmon Resonances. Science, 2014, 343, 1444-1445.	12.6	16
339	A room-temperature mid-infrared photodetector for on-chip molecular vibrational spectroscopy. Applied Physics Letters, 2018, 113, .	3.3	16
340	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	14.6	16
341	Photoluminescence spectra of epitaxial single crystal C60. Chemical Physics Letters, 1995, 242, 592-597.	2.6	15
342	Low energy (<5 eV) F+ and Fâ^' ion transmission through condensed layers of water. Journal of Chemical Physics, 1997, 106, 2801-2810.	3.0	15

#	Article	IF	CITATIONS
343	Surface Structure and Electron Density Dependence of ScatteredNe+Ion Fractions from Cd- and S-TerminatedCdS{0001}Surfaces. Physical Review Letters, 1998, 81, 5153-5156.	7.8	15
344	Subwavelength imaging in colour. Nature Photonics, 2008, 2, 387-388.	31.4	15
345	A density functional study of small alkali halide systems. Journal of Chemical Physics, 1994, 101, 8903-8907.	3.0	14
346	Energies and lifetimes of xenon Rydberg states near a metal surface. Surface Science, 2000, 448, L193-L199.	1.9	14
347	lonization of xenon Rydberg atoms at surfaces. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 403-407.	1.4	14
348	Plasmon hybridization for real metals. Science Bulletin, 2010, 55, 2629-2634.	1.7	14
349	Quantum junction plasmons in graphene dimers. Laser and Photonics Reviews, 2013, 7, 297-302.	8.7	14
350	Oblique Colloidal Lithography for the Fabrication of Nonconcentric Features. ACS Nano, 2017, 11, 6594-6604.	14.6	14
351	Gd $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ -mesoporous silica/gold nanoshells: A potential dual $<$ i $>$ T $<$ /i $><$ sub $>$ 1 $<$ sub $>$ 1 $<$ i $>$ Csub $>$ 2 $<$ sub $>$ 2 $<$ sub $>$ 2 $<$ sub $>$ 2 (sub) of Sciences of the United States of America, 2022, 119, .	7.1	14
352	A density-functional study of the effects of an external electric field on admolecule–surface systems. Surface Science, 1998, 401, 47-55.	1.9	13
353	Charge transfer in collisions of C2+ions with H atoms at low-keV energies: A possible bound state of CH2+. Physical Review A, 1998, 57, 4483-4489.	2.5	13
354	Fabrication of Split-Rings via Stretchable Colloidal Lithography. ACS Photonics, 2014, 1, 127-134.	6.6	13
355	Quantifying Remote Heating from Propagating Surface Plasmon Polaritons. Nano Letters, 2017, 17, 5646-5652.	9.1	13
356	Optical-Force-Dominated Directional Reshaping of Au Nanodisks in Al–Au Heterodimers. Nano Letters, 2018, 18, 6509-6514.	9.1	13
357	Crystallographic dependence of recoiled Oâ^'-ion fractions from Ni $\{100\}$ c(2×2)-O and NiO $\{100\}$ surfaces. Physical Review B, 1993, 47, 2369-2377.	3.2	12
358	Electron- and photon-stimulated desorption of atomic hydrogen from radiation-modified alkali halide surfaces. Physical Review B, 2000, 62, 10535-10543.	3.2	12
359	Antibonding plasmon mode coupling of an individual hole in a thin metallic film. Physical Review B, 2009, 80, .	3.2	12
360	Optimum areal coverage for perfect transmission in a periodic metal hole array. Applied Physics Letters, 2010, 97, 261112.	3.3	12

#	Article	IF	CITATIONS
361	Theory, Simulation, and Computation in Nanoscience and Nanotechnology. ACS Nano, 2017, 11, 6505-6506.	14.6	12
362	Polarized evanescent waves reveal trochoidal dichroism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16143-16148.	7.1	12
363	Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations. Nano Letters, 2021, 21, 2658-2665.	9.1	12
364	Vibrational properties of hydrogen chemisorbed on W(001) and Mo(001). Surface Science, 1990, 234, 412-420.	1.9	11
365	Theoretical study of O2 dissociation on copper and nickel clusters. Surface Science, 1994, 320, 320-330.	1.9	11
366	Plasmonic nanoparticle-based epoxy photocuring: A deeper look. Materials Today, 2019, 27, 14-20.	14.2	11
367	Charge transfer in collisions of an H+ ion with a ground-state Mg atom at low keV collision energies. Chemical Physics Letters, 1997, 264, 51-56.	2.6	10
368	The Effect of Water on the Fe3+/Fe2+ Reduction Potential of Heme. Biochemical and Biophysical Research Communications, 2000, 268, 683-687.	2.1	10
369	Aluminum Nanocrystals Grow into Distinct Branched Aluminum Nanowire Morphologies. Nano Letters, 2020, 20, 6644-6650.	9.1	10
370	A densityâ€functional study of cluster reactivity: Ammonia reacting with a free Ga5As5 cluster. Journal of Chemical Physics, 1994, 101, 8922-8927.	3.0	9
371	Effect of parallel velocity on the formation of a Kondo resonance in the atom-surface interaction. Physical Review B, 1999, 59, 13322-13327.	3.2	9
372	Charge-transfer cross sections in collisions of ground-state Na atoms withH+at low-eV collision energies. Physical Review A, 2001, 63, .	2.5	9
373	Spin-dependent studies of the dynamics of He(23S) atom deexcitation at surfaces. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 245-252.	1.4	8
374	Doping dependence of electronic charge transfer on Si(100). Surface Science, 2001, 489, L561-L567.	1.9	8
375	Hartree approximation I: The fixed point approach. Journal of Mathematical Physics, 2001, 42, 3390-3406.	1.1	8
376	Effects of Electronic Structure on Molecular Plasmon Dynamics. Journal of Physical Chemistry C, 2020, 124, 20450-20457.	3.1	8
377	Summary Abstract: Theoretical picture of the adsorption of H2 on metal surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 698-699.	2.1	7
378	Electron tunneling rates between atoms and surfaces covered by dielectric films. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 305-309.	1.4	7

#	Article	IF	CITATIONS
379	Resonant charge transfer process in ion–metal surface collisions: effect of the presence of vacancies on the surface. Nuclear Instruments & Methods in Physics Research B, 1999, 157, 55-60.	1.4	7
380	Use of spin-labelling techniques to probe the dynamics of He+ ion neutralization at clean metal surfaces. Nuclear Instruments & Methods in Physics Research B, 1999, 157, 68-74.	1.4	7
381	Optical properties of a spherical two-dimensional electron gas in a uniform magnetic field. Journal of Physics Condensed Matter, 2004, 16, 8233-8241.	1.8	7
382	Reply to: Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nature Catalysis, 2022, 5, 247-250.	34.4	7
383	Anisotropic charge transfer between hydrogenic states and a metallic substrate. Physical Review B, 1993, 47, 4142-4145.	3.2	6
384	A densityâ€functional study of cluster reactivity. II. Two ammonia molecules reacting with a free Ga5As5 cluster. Journal of Chemical Physics, 1995, 102, 7484-7489.	3.0	6
385	Trajectory dependence of scattered Ne+ and recoiled Sâ^' ion fractions from the Cd- and S-terminated CdS{0001} surfaces. Journal of Chemical Physics, 1999, 110, 8139-8149.	3.0	6
386	Charge-transfer processes in collisions ofH+ions with phosphorus atoms at low energies. Physical Review A, 1999, 59, 405-411.	2.5	6
387	The dynamics of He+ ion neutralization at metal surfaces: spin dependent studies. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 656-660.	1.4	6
388	Intra-atomic correlation effects in charge transfer. Nuclear Instruments & Methods in Physics Research B, 1993, 78, 11-19.	1.4	5
389	Use of spin-labelling techniques to probe the dynamics of He(23 S) deexcitation at solid surfaces. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1994, 30, 239-243.	1.0	5
390	Influence of the atomic polarization potential on the tunneling rates of electrons between atoms and surfaces. Surface Science, 1997, 371, L235-L241.	1.9	5
391	Simple master equation for the description of charge transfer in atom–surface scattering. Progress in Surface Science, 2001, 67, 155-165.	8.3	5
392	Effect of a surface Al adatom on the resonant charge transfer between an Hâ [^] ion and an Al() surface. Surface Science, 2002, 506, 145-160.	1.9	5
393	Plasmonic Materials: A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University (Adv. Mater. 36/2012). Advanced Materials, 2012, 24, 4774-4774.	21.0	5
394	Surface structure and electron density dependence of scattered Ne+ ion fractions from the Si(100)-($2\tilde{A}$ -1) surface. Surface Science, 2001, 470, 255-264.	1.9	4
395	Hartree approximation III: Symmetry breaking. Journal of Mathematical Physics, 2001, 42, 3424-3438.	1.1	4
396	Optical properties of metallic nanoshells. , 2002, 4810, 91.		4

#	Article	IF	CITATIONS
397	Electronic structure and optical properties of metallic nanoshells., 2003, 5221, 151.		4
398	A Dual Catalyst Strategy for Controlling Aluminum Nanocrystal Growth. Nano Letters, 2022, 22, 5570-5574.	9.1	4
399	Hartree approximation II: The thermodynamic limit. Journal of Mathematical Physics, 2001, 42, 3407-3423.	1.1	3
400	Coupling of nanoparticle plasmons with molecular linkers. Proceedings of SPIE, 2011, , .	0.8	3
401	The 15th Anniversary of the U.S. National Nanotechnology Initiative. ACS Nano, 2018, 12, 10567-10569.	14.6	3
402	LIFETIMES OF ATOMIC STATES NEAR SURFACES. Advanced Series in Physical Chemistry, 1995, , 347-368.	1.5	3
403	Theoretical studies of molecular adsorption on metal surfaces. International Journal of Quantum Chemistry, 1983, 23, 1083-1090.	2.0	2
404	Dependence of alignment and orientation induced by grazing-incidence and beam-foil electron-exchange interactions on surface electronic structure. Surface Science, 1989, 211-212, 198-206.	1.9	2
405	Non-adiabatic effects in charge transfer caused by electron correlation. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 260-266.	1.4	2
406	A densityâ€functional study of cluster reactivity. III. NH3 on a free Ga5As+5 cationic cluster. Journal of Chemical Physics, 1996, 104, 1477-1482.	3.0	2
407	Plasmon-enhanced terahertz near-field microscopy. , 2007, , .		2
408	Optical Properties of Metallic Nanoparticle Arrays for Oblique Excitation Using the Multiple Unit Cell Method. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2031-2039.	0.4	2
409	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	6.6	2
410	Physisorption interaction of H2 with simple metals. Surface Science Letters, 1986, 175, L753-L758.	0.1	1
411	Summary Abstract: The barrier to oxygen penetration on transitionâ€metal oxide surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 1081-1082.	2.1	1
412	Recent developements in charge-transfer theory. Progress in Surface Science, 1996, 53, 265-272.	8.3	1
413	Charge transfer inF2+ions colliding with He atoms below keV energies and its reverse process. Physical Review A, 2000, 62, .	2.5	1
414	Prediction of structure-dependent charge transfer rates for a Li atom outside a Si(001) surface. Surface Science, 2007, 601, L29-L33.	1.9	1

#	Article	IF	Citations
415	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	14.6	1
416	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	14.6	1
417	Physisorption interaction of H2 with noble metals. Surface Science Letters, 1985, 152-153, A143.	0.1	0
418	Calculating Barriers to Oxygen Penetration on Metal Oxides with the Effective-Medium Theory. Materials Research Society Symposia Proceedings, 1988, 141, 279.	0.1	0
419	Plasmon hybridization in metallic nanostructures. , 2004, , .		0
420	Plasmon hybridization in complex metallic nanostructures. , 2005, , .		0
421	Charge-transfer processes inF2++H→F++H+collisions and the reverse process at low-keV energies. Physical Review A, 2005, 72, .	2.5	0
422	Charge-transfer cross sections in collisions of ground-state Ca and H+. Physical Review A, 2006, 73, .	2.5	0
423	Fano resonances in spectroscopy of individual hybridized plasmonic nanocavities. , 2009, , .		O
424	Spectral and spatial mode engineering of plasmonic nanocavities: Subradiant modes and tunable Fano resonances. , 2009, , .		0
425	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	14.6	0
426	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	14.6	0
427	Design and implementation of plasmonic resonators with sub-radiant and Fano modes. , 2009, , .		0
428	Quantum effects in subnanometric-gap plasmonic antennas., 2012,,.		0
429	Quantum Plasmonics and Plexcitonics. , 2013, , .		0
430	Nonlinear Generation of Vacuum Ultraviolet Light with an All-Dielectric Metasurface. , 2019, , .		0
431	Design and fabrication of the vacuum ultraviolet nonlinear metasurfaces. , 2020, , .		0
432	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	14.6	0