Jan Genzer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3177325/jan-genzer-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 280
 17,095
 55
 125

 papers
 citations
 h-index
 g-index

 291
 18,544
 6
 6.88

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
280	Deposition of silicate coatings on poly(ethylene terephthalate) for improved scratch and solvent resistance. <i>Journal of Applied Polymer Science</i> , 2022 , 139, 51800	2.9	
279	Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. <i>Composite Structures</i> , 2022 , 279, 114759	5.3	1
278	Continuous Ligand-Free SuzukiMiyaura Cross-Coupling Reactions in a Cartridge Flow Reactor Using a Gel-Supported Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 9418-9428	3.9	3
277	Functional Gels Containing Hydroxamic Acid Degrade Organophosphates in Aqueous Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 8799-8811	3.9	0
276	Antipathogenic properties and applications of low-dimensional materials. <i>Nature Communications</i> , 2021 , 12, 3897	17.4	17
275	DFT Analysis of Organotin Catalytic Mechanisms in Dehydration Esterification Reactions for Terephthalic Acid and 2,2,4,4-Tetramethyl-1,3-cyclobutanediol. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4943-4956	2.8	
274	UV- and Thermally-Active Bifunctional Gelators Create Surface-Anchored Polymer Networks. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100266	4.8	3
273	Dynamic Surfaces-Degradable Polyester Networks that Resist Protein Adsorption. <i>Langmuir</i> , 2021 , 37, 8978-8988	4	0
272	Stiff or Extensible in Seconds: Light-Induced Corrugations in Thin Polymer Sheets. <i>Advanced Materials Technologies</i> , 2021 , 6, 2000789	6.8	1
271	Dual-Responsive Microgels for Structural Repair and Recovery of Nonwoven Membranes for Liquid Filtration. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1508-1517	4.3	2
270	Novel computational design of high refractive index nanocomposites and effective refractive index tuning based on nanoparticle morphology effect. <i>Composites Part B: Engineering</i> , 2021 , 223, 109128	10	O
269	Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes <i>Biomacromolecules</i> , 2021 ,	6.9	4
268	Effect of surface interactions on the settlement of particles on a sinusoidally corrugated substrate <i>RSC Advances</i> , 2020 , 10, 11348-11356	3.7	3
267	Controlled heating and alignment platform enhances versatility in colloidal probe fabrication. <i>Review of Scientific Instruments</i> , 2020 , 91, 013903	1.7	
266	Extending the fused-sphere SAFT-IMie force field parameterization approach to poly(vinyl butyral) copolymers. <i>Journal of Chemical Physics</i> , 2020 , 152, 044903	3.9	4
265	Charge Density Gradients of Polymer Thin Film by Gaseous Phase Quaternization. <i>ACS Macro Letters</i> , 2020 , 9, 158-162	6.6	2
264	Design of High Efficient Mid-Wavelength Infrared Polarizer on ORMOCHALC Polymer. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 2000033	3.9	6

263	Application of a Laser Cutter to Pattern Wrinkles on Polymer Films. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 1848-1855	4.3	2
262	Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles. <i>Advanced Science</i> , 2020 , 7, 2000192	13.6	85
261	Packing density, homogeneity, and regularity: Quantitative correlations between topology and thermoresponsive morphology of PNIPAM-co-PAA microgel coatings. <i>Applied Surface Science</i> , 2020 , 508, 145129	6.7	6
260	Dependence of deposition method on the molecular structure and stability of organosilanes revealed from degrafting by tetrabutylammonium fluoride. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 658-666	3.6	2
259	Nonwoven fiber mats with thermo-responsive permeability to inorganic and organic electrolytes. Journal of Membrane Science, 2020 , 616, 118439	9.6	8
258	Enhanced mid-wavelength infrared refractive index of organically modified chalcogenide (ORMOCHALC) polymer nanocomposites with thermomechanical stability. <i>Optical Materials</i> , 2020 , 108, 110197	3.3	7
257	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216	2.6	36
256	Effect of Poly(vinyl butyral) Comonomer Sequence on Adhesion to Amorphous Silica: A Coarse-Grained Molecular Dynamics Study. <i>ACS Applied Materials & Dynamics Study</i> , 12, 47879-478	90 ⁵	5
255	Network-supported, metal-mediated catalysis: progress and perspective. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 1892-1902	4.9	2
254	Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate. <i>Langmuir</i> , 2019 , 35, 13693-13699	4	1
253	Light-Induced Structuring of Photosensitive Polymer Brushes. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 3017-3026	4.3	6
252	Thermally driven directional free-radical polymerization in confined channels. <i>Polymer Chemistry</i> , 2019 , 10, 920-925	4.9	O
251	Development of a fused-sphere SAFT-IMie force field for poly(vinyl alcohol) and poly(ethylene). <i>Journal of Chemical Physics</i> , 2019 , 150, 034901	3.9	10
250	Influence of surface topography attributes on settlement and adhesion of natural and synthetic species. <i>Soft Matter</i> , 2019 , 15, 4045-4067	3.6	27
249	Shrink Films Get a Grip. ACS Applied Polymer Materials, 2019, 1, 1088-1095	4.3	6
248	Toughening stretchable fibers via serial fracturing of a metallic core. <i>Science Advances</i> , 2019 , 5, eaat460	04.3	38
247	Spontaneous Degrafting of Weak and Strong Polycationic Brushes in Aqueous Buffer Solutions. <i>Macromolecules</i> , 2019 , 52, 6192-6200	5.5	7
246	Hydrogel/Elastomer Laminates Bonded via Fabric Interphases for Stimuli-Responsive Actuators. <i>Matter</i> , 2019 , 1, 674-689	12.7	45

245	Determining Water Sorption and Desorption in Thin Hydrophilic Polymer Films by Thermal Treatment. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2495-2502	4.3	4
244	Computer Simulation of Surface-Initiated Controlled Radical Polymerization: Effect of Free-Monomer Model on Brush Properties. <i>Macromolecular Theory and Simulations</i> , 2019 , 28, 1900033	1.5	8
243	Generating Surface-Anchored Zwitterionic Networks and Studying Their Resistance to Bovine Serum Albumin Adsorption. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 3323-3333	4.3	3
242	Liquid Metal Nanoparticles as Initiators for Radical Polymerization of Vinyl Monomers. <i>ACS Macro Letters</i> , 2019 , 8, 1522-1527	6.6	44
241	Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles. <i>Smart Materials and Structures</i> , 2019 , 28, 045011	3.4	14
240	Thermally Activated One-Pot, Simultaneous Radical and Condensation Reactions Generate Surface-Anchored Network Layers from Common Polymers. <i>Macromolecules</i> , 2019 , 52, 700-707	5.5	6
239	Fabrication of Flexible Hydrogel Sheets Featuring Periodically Spaced Circular Holes with Continuously Adjustable Size in Real Time. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10, 30844-308	5 ^{9⋅5}	5
238	Adsorption of size-polydisperse particles on sinusoidally corrugated surfaces. <i>Molecular Simulation</i> , 2018 , 44, 494-506	2	2
237	Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene-alt-maleic anhydride) in aqueous solutions. <i>Nanoscale</i> , 2018 , 10, 19871-19878	7.7	58
236	Kinetic Study of Degrafting Poly(methyl methacrylate) Brushes from Flat Substrates by Tetrabutylammonium Fluoride. <i>Macromolecules</i> , 2018 , 51, 10237-10245	5.5	5
235	Shape memory polymers for self-folding via compression of thermoplastic sheets. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46889	2.9	2
234	Visualization of Mechanochemically-Assisted Degrafting of Surface-Tethered Poly(Acrylic Acid) Brushes. <i>ACS Macro Letters</i> , 2018 , 7, 609-613	6.6	6
233	Phase Behavior and Self-Assembly of Perfectly Sequence-Defined and Monodisperse Multiblock Copolypeptides. <i>Biomacromolecules</i> , 2017 , 18, 599-609	6.9	37
232	Controllable curvature from planar polymer sheets in response to light. <i>Soft Matter</i> , 2017 , 13, 2299-230	083.6	34
231	Shape-transformable liquid metal nanoparticles in aqueous solution. <i>Chemical Science</i> , 2017 , 8, 3832-38	3 37 .4	104
230	Effect of Network Density in Surface-Anchored Poly(N-isopropylacrylamide) Hydrogels on Adsorption of Fibrinogen. <i>Langmuir</i> , 2017 , 33, 1974-1983	4	13
229	Sequential self-folding of polymer sheets. <i>Science Advances</i> , 2017 , 3, e1602417	14.3	183
228	Further Insight into the Mechanism of Poly(styrene-co-methyl methacrylate) Microsphere Formation. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 2249-2259	2.5	2

(2016-2017)

227	A fully coupled thermo-viscoelastic finite element model for self-folding shape memory polymer sheets. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2017 , 55, 1207-1219	2.6	15
226	Sensors: Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers (Adv. Funct. Mater. 20/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	2
225	Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers. <i>Advanced Functional Materials</i> , 2017 , 27, 1605630	15.6	171
224	Enhanced Stability of Surface-Tethered Diblock Copolymer Brushes with a Neutral Polymer Block and a Weak Polyelectrolyte Block: Effects of Molecular Weight and Hydrophobicity of the Neutral Block. <i>Macromolecules</i> , 2017 , 50, 8580-8587	5.5	14
223	Salt-Induced Aggregation of Negatively Charged Gold Nanoparticles Confined in a Polymer Brush Matrix. <i>Macromolecules</i> , 2017 , 50, 7333-7343	5.5	37
222	Vacuum filling of complex microchannels with liquid metal. <i>Lab on A Chip</i> , 2017 , 17, 3043-3050	7.2	107
221	Vapor Swelling of Hydrophilic Polymer Brushes 2017 , 243-266		
220	Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets. <i>Journal of Applied Physics</i> , 2017 , 122, 195103	2.5	9
219	Design and Fabrication of Wettability Gradients with Tunable Profiles through Degrafting Organosilane Layers from Silica Surfaces by Tetrabutylammonium Fluoride. <i>Langmuir</i> , 2017 , 33, 14556-	14564	9
218	Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation	4	1
	on Surfaces and Increased Activity of Adsorbed Proteins. <i>Langmuir</i> , 2016 , 32, 8660-7	4	4
217	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1829-41	4.4	11
217	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on	4.4	11
	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1829-41 Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM		
216	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1829-41 Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM brush/gold nanoparticle hybrids. <i>Polymer</i> , 2016 , 98, 454-463 Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces. <i>ACS Applied Materials</i>	3.9	17
216	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1829-41 Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM brush/gold nanoparticle hybrids. <i>Polymer</i> , 2016 , 98, 454-463 Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 5694-705 Self-Folding of Thick Polymer Sheets Using Gradients of Heat. <i>Journal of Mechanisms and Robotics</i> ,	3.9 9.5 2.2	7
216 215 214	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1829-41 Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM brush/gold nanoparticle hybrids. <i>Polymer</i> , 2016 , 98, 454-463 Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 5694-705 Self-Folding of Thick Polymer Sheets Using Gradients of Heat. <i>Journal of Mechanisms and Robotics</i> , 2016 , 8,	3.9 9.5 2.2	17 7 16
216 215 214 213	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1829-41 Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM brush/gold nanoparticle hybrids. <i>Polymer</i> , 2016 , 98, 454-463 Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces. <i>ACS Applied Materials & Mamp; Interfaces</i> , 2016 , 8, 5694-705 Self-Folding of Thick Polymer Sheets Using Gradients of Heat. <i>Journal of Mechanisms and Robotics</i> , 2016 , 8, Polymer brushes modified by photosensitive azobenzene containing polyamines. <i>Polymer</i> , 2016 , 98, 42	3.9 9.5 2.2	17 7 16 25

209	Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes. <i>ACS Applied Materials & District Materia</i>	9.5	35
208	Amidation of Polyesters Is Slow in Nonaqueous Solvents: Efficient Amidation of Poly(ethylene terephthalate) with 3-Aminopropyltriethoxysilane in Water for Generating Multifunctional Surfaces. <i>ACS Applied Materials & Description</i> (1988) 1988 1989 1989 1989 1989 1989 1989	9.5	18
207	Swelling of Hydrophilic Polymer Brushes by Water and Alcohol Vapors. <i>Macromolecules</i> , 2016 , 49, 4316-	4339	25
206	Drawing liquid metal wires at room temperature. <i>Extreme Mechanics Letters</i> , 2016 , 7, 55-63	3.9	23
205	Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 10348-58	3.4	34
204	Instability of Surface-Grafted Weak Polyacid Brushes on Flat Substrates. <i>Macromolecules</i> , 2015 , 48, 567	7 ₅ 55687	18
203	Film-Stabilizing Attributes of Polymeric Core-Shell Nanoparticles. ACS Nano, 2015, 9, 7940-9	16.7	8
202	Proteinlike copolymers as encapsulating agents for small-molecule solutes. <i>Langmuir</i> , 2015 , 31, 3518-20	54	9
201	Making polymer brush photosensitive with azobenzene containing surfactants. <i>Polymer</i> , 2015 , 79, 65-72	23.9	32
200	Creating surface patterns of polymer brushes by degrafting via tetrabutyl ammonium fluoride. <i>RSC Advances</i> , 2015 , 5, 86120-86125	3.7	8
199	Self-folding of polymer sheets using microwaves and graphene ink. <i>RSC Advances</i> , 2015 , 5, 89254-89267	13.7	29
198	Modelling of shape memory polymer sheets that self-fold in response to localized heating. <i>Soft Matter</i> , 2015 , 11, 7827-34	3.6	25
197	Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release. <i>ACS Applied Materials & District Resistance and Triggered Biofouling Release</i> . <i>ACS Applied Materials & District Resistance and Triggered Biofouling Release</i> . <i>ACS Applied Materials & District Resistance and Triggered Biofouling Release</i> . <i>ACS Applied Materials & District Resistance and Triggered Biofouling Release</i> . <i>ACS Applied Materials & District Resistance and Triggered Biofouling Release</i> . <i>ACS Applied Materials & District Resistance and Triggered Biofouling Release</i> . <i>ACS Applied Materials & District Resistance and Triggered Biofouling Release</i> .	9.5	50
196	Beyond microstructures: Using the Kerr Effect to characterize the macrostructures of synthetic polymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 155-166	2.6	11
195	Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C60 Bilayer Laminates. <i>Zeitschrift Fur Physikalische Chemie</i> , 2015 , 229,	3.1	3
194	Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. <i>Small</i> , 2015 , 11, 6397-	-403	160
193	Polymer Brush/Metal Nanoparticle Hybrids for Optical Sensor Applications: from Self-Assembly to Tailored Functions and Nanoengineering. <i>Zeitschrift Fur Physikalische Chemie</i> , 2015 , 229,	3.1	21
192	Expanding the Polymer Mechanochemistry Toolbox through Surface-Initiated Polymerization. <i>ACS Macro Letters</i> , 2015 , 4, 636-639	6.6	47

191	On-demand degrafting and the study of molecular weight and grafting density of poly(methyl methacrylate) brushes on flat silica substrates. <i>Langmuir</i> , 2015 , 31, 2372-81	4	68
190	Direct Measurement of Molecular Weight and Grafting Density by Controlled and Quantitative Degrafting of Surface-Anchored Poly(methyl methacrylate). <i>ACS Macro Letters</i> , 2015 , 4, 251-254	6.6	45
189	Self-Folding Origami Microstrip Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2014 , 62, 541	l 6 ₁ .5 ₉ 41	9 80
188	Adsorption of multiple spherical particles onto sinusoidally corrugated substrates. <i>Langmuir</i> , 2014 , 30, 9407-17	4	6
187	Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes. <i>Langmuir</i> , 2014 , 30, 13033-41	4	45
186	Swelling of polyelectrolyte and polyzwitterion brushes by humid vapors. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12737-45	16.4	76
185	Evolution of homopolymer thin-film instability on surface-anchored diblock copolymers varying in composition. <i>Langmuir</i> , 2014 , 30, 11689-95	4	5
184	Three-dimensional folding of pre-strained polymer sheets via absorption of laser light. <i>Journal of Applied Physics</i> , 2014 , 115, 204911	2.5	49
183	In-plane deformation of shape memory polymer sheets programmed using only scissors. <i>Polymer</i> , 2014 , 55, 5948-5952	3.9	7
182	Adsorption of "soft" spherical particles onto sinusoidally-corrugated substrates. <i>Soft Matter</i> , 2014 , 10, 7452-8	3.6	7
181	Simple geometric model to describe self-folding of polymer sheets. <i>Physical Review E</i> , 2014 , 89, 042601	2.4	23
180	Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks. <i>Polymer</i> , 2014 , 55, 3107-3119	3.9	47
179	Toward the development of a versatile functionalized silicone coating. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2014 , 6, 22544-52	9.5	14
178	Thiol-containing polymeric embedding materials for nanoskiving. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 121-130	7.1	15
177	Opto-mechanical scission of polymer chains in photosensitive diblock-copolymer brushes. <i>Langmuir</i> , 2013 , 29, 13967-74	4	40
176	On the surface interactions of proteins with lignin. ACS Applied Materials & amp; Interfaces, 2013, 5, 199-	-206	58
175	Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering. <i>Soft Matter</i> , 2013 , 9, 7797	3.6	30
174	Self-assembly fronts in collision: impinging ordering organosilane layers. <i>Soft Matter</i> , 2013 , 9, 2493	3.6	3

173	Microfluidic channels fabricated from poly(vinylmethylsiloxane) networks that resist swelling by organic solvents. <i>Lab on A Chip</i> , 2013 , 13, 4317-20	7.2	5
172	Generation and properties of antibacterial coatings based on electrostatic attachment of silver nanoparticles to protein-coated polypropylene fibers. <i>ACS Applied Materials & Discrete Section</i> , 5, 5298-306	9.5	57
171	Effect of Protein-like Copolymers Composition on the Phase Separation Dynamics of a Polymer Blend: A Monte Carlo Simulation. <i>Macromolecules</i> , 2013 , 46, 4207-4214	5.5	5
170	Computer Simulation of Template Polymerization Using a Controlled Reaction Scheme. <i>Macromolecules</i> , 2013 , 46, 2474-2484	5.5	4
169	Elastomeric microparticles for acoustic mediated bioseparations. <i>Journal of Nanobiotechnology</i> , 2013 , 11, 22	9.4	140
168	Water-wettable polypropylene fibers by facile surface treatment based on soy proteins. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1.5, 6541-8	9.5	35
167	Progress in Computer Simulation of Bulk, Confined, and Surface-initiated Polymerizations. <i>Macromolecular Theory and Simulations</i> , 2013 , 22, 8-30	1.5	21
166	Influence of gradient strength and composition profile on the onset of the cloud point transition in hydroxyethyl methacrylate/dimethylaminoethyl methacrylate gradient copolymers. <i>Polymer</i> , 2012 , 53, 1131-1137	3.9	23
165	Applications of surface-grafted macromolecules derived from post-polymerization modification reactions. <i>Progress in Polymer Science</i> , 2012 , 37, 871-906	29.6	115
164	Directed Assembly of Block Copolymer Films: Effects of Rough Substrates and Thermal Fields 2012 , 25	57-278	
163	Gradient Libraries: Harnessing a Ubiquitous Phenomenon to Accelerate Experimentation 2012 , 1-18		
162	Hydrogel Gradients by Self-Initiated Photografting and Photopolymerization: Preparation, Characterization, and Protein Interactions 2012 , 279-302		1
161	Polymer Gradients: Responsive Grafted Layers 2012 , 303-328		
160	Bioactive Self-Assembled Monolayer Gradients 2012 , 329-363		1
159	Morphology Gradients on Different Size Scales and Their Application in Biological Studies 2012 , 365-38	31	
158	Motion of Drops on Gradient Surfaces 2012 , 407-429		5
157	Classification of Key Attributes of Soft Material Gradients 2012 , 19-46		
156	Discovery and Optimization of Sensing Materials Using Discrete and Gradient Arrays 2012 , 47-92		

Gradient Assembly of Complex Surfaces for Sensing, Fabrication, and High Throughput Analysis **2012**, 145-198

154	Electrochemical Mapping for Polymer Chemical and Physical Gradients 2012 , 229-256		
153	Continuous Infusion Microchannel Approach to Generate Composition Gradients from Viscous Polymer Solutions 2012 , 129-143		1
152	Determining the Polydispersity in Chemical Composition and Monomer Sequence Distribution in Random Copolymers Prepared by Postpolymerization Modification of Homopolymers. <i>ACS Macro Letters</i> , 2012 , 1, 1128-1133	6.6	5
151	Responsive PET nano/microfibers via surface-initiated polymerization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 59-64	9.5	26
150	Generation of functional PET microfibers through surface-initiated polymerization. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5855		47
149	Self-folding of polymer sheets using local light absorption. Soft Matter, 2012, 8, 1764-1769	3.6	393
148	Phase behavior of gradient copolymer solutions: a Monte Carlo simulation study. <i>Soft Matter</i> , 2012 , 8, 6471	3.6	22
147	Oligomer orientation in vapor-molecular-layer-deposited alkyl-aromatic polyamide films. <i>Langmuir</i> , 2012 , 28, 10464-70	4	30
146	Computer Simulation of Concurrent Bulk- and Surface-Initiated Living Polymerization. <i>Macromolecules</i> , 2012 , 45, 2128-2137	5.5	49
145	Formation of polyampholyte brushes via controlled radical polymerization and their assembly in solution. <i>Langmuir</i> , 2012 , 28, 872-82	4	36
144	Adsorption of glycinin and Etonglycinin on silica and cellulose: surface interactions as a function of denaturation, pH, and electrolytes. <i>Biomacromolecules</i> , 2012 , 13, 387-96	6.9	21
143	Experimental and computational study of the effect of alcohols on the solution and adsorption properties of a nonionic symmetric triblock copolymer. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 1289-	-98 ¹	9
142	Creating Functional Materials by Chemical and Physical Functionalization of Silicone Elastomer Networks. <i>Advances in Silicon Science</i> , 2012 , 59-94		1
141	The effect of confinement on thermal frontal polymerization. <i>Polymer Chemistry</i> , 2012 , 3, 3243	4.9	8
140	Surface-Bound Gradients for Studies of Soft Materials Behavior. <i>Annual Review of Materials Research</i> , 2012 , 42, 435-468	12.8	79
139	Time dependence of lysozyme adsorption on end-grafted polymer layers of variable grafting density and length. <i>Langmuir</i> , 2012 , 28, 2122-30	4	16
138	Generation of functional coatings on hydrophobic surfaces through deposition of denatured proteins followed by grafting from polymerization. <i>Biomacromolecules</i> , 2012 , 13, 1371-82	6.9	27

137	Surface-Initiated Polymerization by Means of Novel, Stable, Non-Ester-Based Radical Initiator. <i>Macromolecules</i> , 2012 , 45, 3802-3815	5.5	42
136	Formation and antifouling properties of amphiphilic coatings on polypropylene fibers. <i>Biomacromolecules</i> , 2012 , 13, 3769-79	6.9	49
135	Colliding Self-Assembly Waves in Organosilane Monolayers 2012 , 93-107		
134	Orientational Anchoring of Liquid Crystals on Surfaces Presenting Continuous Gradients in Composition 2012 , 109-128		
133	Interfacial stabilization of bilayered nanolaminates by asymmetric block copolymers. <i>Applied Physics Letters</i> , 2012 , 100, 101602	3.4	3
132	Molecularly Defined Peptide Spacing Gradients for Cell Guidance 2012 , 383-405		
131	Making Gradient Patterns by Electron-Beam Chemical Lithography with Monomolecular Resists 2012 , 199-227		3
130	Poly(2-hydroxyethyl methacrylate) for enzyme immobilization: impact on activity and stability of horseradish peroxidase. <i>Biomacromolecules</i> , 2011 , 12, 1822-30	6.9	51
129	Multilayers of weak polyelectrolytes of low and high molecular mass assembled on polypropylene and self-assembled hydrophobic surfaces. <i>Langmuir</i> , 2011 , 27, 4541-50	4	16
128	Photochromic materials with tunable color and mechanical flexibility. <i>Soft Matter</i> , 2011 , 7, 3766-3774	3.6	18
127	Simultaneous bulk- and surface-initiated controlled radical polymerization from planar substrates. Journal of the American Chemical Society, 2011 , 133, 17567-9	16.4	96
126	Effect of copolymer compatibilizer sequence on the dynamics of phase separation of immiscible binary homopolymer blends. <i>Soft Matter</i> , 2011 , 7, 10620	3.6	13
125	Phase Separation Dynamics for a Polymer Blend Compatibilized by Protein-like Copolymers: A Monte Carlo Simulation. <i>Macromolecules</i> , 2011 , 44, 8284-8293	5.5	13
124	Cloud point suppression in dilute solutions of model gradient copolymers with prespecified composition profiles. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 629-637	2.6	22
123	Charge- and temperature-dependent interactions between anionic poly(N-isopropylacrylamide) polymers in solution and a cationic surfactant at the water/air interface. <i>Soft Matter</i> , 2011 , 7, 8498	3.6	5
122	Poly(vinylmethylsiloxane) elastomer networks as functional materials for cell adhesion and migration studies. <i>Biomacromolecules</i> , 2011 , 12, 1265-71	6.9	13
121	Block copolymer self-organization vs. interfacial modification in bilayered thin-film laminates. <i>Soft Matter</i> , 2011 , 7, 3268	3.6	14
120	Metallothionein-inspired prototype of molecular pincer. <i>Chemical Communications</i> , 2011 , 47, 8067-9	5.8	1

5	119	Adsorption of PEO-PPO-PEO triblock copolymers with end-capped cationic chains of poly(2-dimethylaminoethyl methacrylate). <i>Langmuir</i> , 2011 , 27, 9769-80	4	19
	118	Emerging applications of stimuli-responsive polymer materials. <i>Nature Materials</i> , 2010 , 9, 101-13	27	4474
-	117	Glass Transition Temperatures of Styrene/4-BrStyrene Copolymers with Variable Co-Monomer Compositions and Sequence Distributions. <i>Macromolecules</i> , 2010 , 43, 6912-6914	5.5	10
	116	Temperature-dependent optical properties of gold nanoparticles coated with a charged diblock copolymer and an uncharged triblock copolymer. <i>ACS Nano</i> , 2010 , 4, 1187-201	16.7	38
1	115	Simulation of Mechanically-Assembled Monolayers In Poor Solvent Using Discontinuous Molecular Dynamics. <i>Macromolecules</i> , 2010 , 43, 3072-3080	5.5	
-	114	Computer Simulation of Controlled Radical Polymerization: Effect of Chain Confinement Due to Initiator Grafting Density and Solvent Quality in G rafting From Method. <i>Macromolecules</i> , 2010 , 43, 9567	'-§∙§77	66
-	113	Investigating the Molecular Origins of Responsiveness in Functional Silicone Elastomer Networks. <i>Macromolecules</i> , 2010 , 43, 5043-5051	5.5	11
	112	Surface and Friction Behavior of a Silicone Surfactant Adsorbed on Model Textiles Substrates. <i>Industrial & Description of the Substrates of the Model Textiles Substrates and Friction Behavior of a Silicone Surfactant Adsorbed on Model Textiles Substrates.</i> **Industrial & Description	3.9	13
1	111	Controlling comonomer distribution in random copolymers by chemical coloring of surface-tethered homopolymers: an insight from discontinuous molecular dynamics simulation. <i>Langmuir</i> , 2010 , 26, 8810-20	4	6
	110	Protein-Like Copolymers (PLCs) as Compatibilizers for Homopolymer Blends. <i>Macromolecules</i> , 2010 , 43, 5149-5157	5.5	12
1	109	Adsorption of a nonionic symmetric triblock copolymer on surfaces with different hydrophobicity. <i>Langmuir</i> , 2010 , 26, 9565-74	4	60
5	108	Neutron reflectometry of supported hybrid bilayers with inserted peptide. Soft Matter, 2010, 6, 862-865	53.6	13
-	107	Formation of silicone elastomer networks films with gradients in modulus. <i>Polymer</i> , 2010 , 51, 763-773	3.9	27
-	106	ATRP of 2-vinylpyridine and tert-butyl acrylate mixtures giving precursors of polyampholytes. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 735-741	2.5	7
-	105	Polymer nanotubules obtained by layer-by-layer deposition within AAO-membrane templates with sub-100-nm pore diameters. <i>Small</i> , 2010 , 6, 2683-9	11	28
-	104	Rapid Removal of Organics and Oil Spills from Waters Using Silicone Rubber Sponges <i>Journal of Dispersion Science and Technology</i> , 2009 , 30, 318-327	1.5	27
-	103	Formation and Properties of Responsive Siloxane-Based Polymeric Surfaces with Tunable Surface Reconstruction Kinetics. <i>Advanced Functional Materials</i> , 2009 , 19, 460-469	15.6	25
	102	Discriminating Among Co-monomer Sequence Distributions in Random Copolymers Using Interaction Chromatography. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1543-8	4.8	14

101	Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. <i>Polymer Engineering and Science</i> , 2009 , 49, 2054-2061	2.3	84
100	Modification of PET surfaces with self-assembled monolayers of organosilane precursors. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2009 , 172, 95-103	1.7	16
99	Asphaltene adsorption onto self-assembled monolayers of mixed aromatic and aliphatic trichlorosilanes. <i>Langmuir</i> , 2009 , 25, 6260-9	4	30
98	Design of Copolymers with Tunable Randomness Using Discontinuous Molecular Dynamics Simulation. <i>Macromolecules</i> , 2009 , 42, 9063-9071	5.5	11
97	Tuning gold nanoparticle-poly(2-hydroxyethyl methacrylate) brush interactions: from reversible swelling to capture and release. <i>ACS Nano</i> , 2009 , 3, 807-18	16.7	45
96	Asphaltene adsorption onto self-assembled monolayers of alkyltrichlorosilanes of varying chain length. <i>ACS Applied Materials & mp; Interfaces</i> , 2009 , 1, 1347-57	9.5	26
95	Effect of Comonomer Sequence Distribution on the Adsorption of Random Copolymers onto Impenetrable Flat Surfaces. <i>Macromolecules</i> , 2009 , 42, 2843-2853	5.5	37
94	Formation of surface-grafted polymeric amphiphilic coatings comprising ethylene glycol and fluorinated groups and their response to protein adsorption. <i>Biointerphases</i> , 2009 , 4, FA33-44	1.8	28
93	Development and testing of hierarchically wrinkled coatings for marine antifouling. <i>ACS Applied Materials & ACS Applied & ACS Applied</i>	9.5	208
92	Simulation of Mechanically Assembled Monolayers and Polymers in Good Solvent Using Discontinuous Molecular Dynamics. <i>Macromolecules</i> , 2008 , 41, 6573-6581	5.5	4
91	Effect of Solvent Quality and Chain Confinement on the Kinetics of Polystyrene Bromination. <i>Macromolecules</i> , 2008 , 41, 6719-6727	5.5	21
90	Surface-bound soft matter gradients. <i>Langmuir</i> , 2008 , 24, 2294-317	4	316
89	Autophobicity-driven surface segregation and patterning of core-shell microgel nanoparticles. <i>Nano Letters</i> , 2008 , 8, 3010-6	11.5	12
88	Effect of Substrate Geometry on Polymer Molecular Weight and Polydispersity during Surface-Initiated Polymerization. <i>Macromolecules</i> , 2008 , 41, 4856-4865	5.5	92
87	Characterization of monolayer formation on aluminum-doped zinc oxide thin films. <i>Langmuir</i> , 2008 , 24, 433-40	4	17
86	Biological and Synthetic Self-Cleaning Surfaces. MRS Bulletin, 2008, 33, 742-746	3.2	134
85	Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 502-508	3.9	65
84	Reactive patterning via post-functionalization of polymer brushes utilizing disuccinimidyl carbonate activation to couple primary amines. <i>Polymer</i> , 2008 , 49, 3770-3779	3.9	51

(2006-2008)

83	Formation and properties of multivariant assemblies of surface-tethered diblock and triblock copolymers. <i>Polymer</i> , 2008 , 49, 4837-4845	3.9	22
82	Statistical copolymers of 2-(trimethylsilyloxy)ethyl methacrylate and methyl methacrylate synthesized by ATRP. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 1919-1923	2.5	13
81	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates: 1. Experiment. <i>Macromolecules</i> , 2007 , 40, 8756-8764	5.5	217
80	Obtaining Concentration Profiles from Computer Simulation Structure Factors. <i>Macromolecules</i> , 2007 , 40, 2629-2632	5.5	11
79	Study of the packing density and molecular orientation of bimolecular self-assembled monolayers of aromatic and aliphatic organosilanes on silica. <i>Langmuir</i> , 2007 , 23, 673-83	4	27
78	Surface Properties of Poly[2-(perfluorooctyl)ethyl acrylate] Deposited from Liquid CO2 High-Pressure Free Meniscus Coating. <i>Macromolecules</i> , 2007 , 40, 588-597	5.5	23
77	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates: 2. Theory. <i>Macromolecules</i> , 2007 , 40, 8765-8773	5.5	137
76	Propagating waves of self-assembly in organosilane monolayers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 10324-9	11.5	38
75	Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates. <i>Nanotechnology</i> , 2007 , 18, 025301	3.4	27
74	Influence of indium l in oxide surface structure on the ordering and coverage of carboxylic acid and thiol monolayers. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 4212-4221	3	33
73	Theoretical study of kinetics of zipping phenomena in biomimetic polymers. <i>Physical Review E</i> , 2007 , 76, 011915	2.4	1
72	Manipulating Siloxane Surfaces: Obtaining the Desired Surface Function via Engineering Design. <i>ACS Symposium Series</i> , 2007 , 222-255	0.4	3
71	Phase behavior and charge regulation of weak polyelectrolyte grafted layers. <i>Physical Review Letters</i> , 2007 , 98, 018302	7.4	87
70	Computer simulation study of probe-target hybridization in model DNA microarrays: effect of probe surface density and target concentration. <i>Journal of Chemical Physics</i> , 2007 , 127, 144912	3.9	38
69	Salt-Induced Depression of Lower Critical Solution Temperature in a Surface-Grafted Neutral Thermoresponsive Polymer. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 697-701	4.8	84
68	Design of random copolymers with statistically controlled monomer sequence distributions via Monte Carlo simulations. <i>Journal of Chemical Physics</i> , 2006 , 125, 014902	3.9	11
67	Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality. <i>Chemistry of Materials</i> , 2006 , 18, 2357-2363	9.6	33
66	Computer simulation study of molecular recognition in model DNA microarrays. <i>Biophysical Journal</i> , 2006 , 91, 2227-36	2.9	26

65	Study of Kinetics and Macroinitiator Efficiency in Surface-Initiated Atom-Transfer Radical Polymerization. <i>Macromolecules</i> , 2006 , 39, 9049-9056	5.5	53
64	In Silico Polymerization: Computer Simulation of Controlled Radical Polymerization in Bulk and on Flat Surfaces. <i>Macromolecules</i> , 2006 , 39, 7157-7169	5.5	66
63	Effects of synthetic amphiphilic alpha-helical peptides on the electrochemical and structural properties of supported hybrid bilayers on gold. <i>Langmuir</i> , 2006 , 22, 1919-27	4	7
62	Tunable instability mechanisms of polymer thin films by molecular self-assembly. <i>Langmuir</i> , 2006 , 22, 8642-5	4	11
61	Formation mechanisms and properties of semifluorinated molecular gradients on silica surfaces. <i>Langmuir</i> , 2006 , 22, 8532-41	4	45
60	Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. <i>Biofouling</i> , 2006 , 22, 339-60	3.3	899
59	Soft matter with hard skin: From skin wrinkles to templating and material characterization. <i>Soft Matter</i> , 2006 , 2, 310-323	3.6	706
58	Combinatorial study of nanoparticle dispersion in surface-grafted macromolecular gradients. <i>Applied Surface Science</i> , 2006 , 252, 2549-2554	6.7	54
57	Nonequilibrium Model for Sorption and Swelling of Bulk Glassy Polymer Films with Supercritical Carbon Dioxide. <i>Macromolecules</i> , 2005 , 38, 10299-10313	5.5	23
56	Evolution of surface morphologies in multivariant assemblies of surface-tethered diblock copolymers after selective solvent treatment. <i>Langmuir</i> , 2005 , 21, 11552-5	4	56
55	Creating responsive surfaces with tailored wettability switching kinetics and reconstruction reversibility. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17610-1	16.4	66
54	Computer Simulation of Block Copolymer/Nanoparticle Composites. <i>Macromolecules</i> , 2005 , 38, 3007-30	03 65	129
53	Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates 2005 , 287-315		8
52	Templating Surfaces with Gradient Assemblies 2005 , 81, 417-435		29
51	Rapid formation of soft hydrophilic silicone elastomer surfaces. <i>Polymer</i> , 2005 , 46, 9329-9341	3.9	55
50	Using spectroscopic ellipsometry for quick prediction of number density of nanoparticles bound to non-transparent solid surfaces. <i>Surface Science</i> , 2005 , 596, 187-196	1.8	27
49	Nested self-similar wrinkling patterns in skins. <i>Nature Materials</i> , 2005 , 4, 293-7	27	662
48	Nanomechanics of opposing glycosaminoglycan macromolecules. <i>Journal of Biomechanics</i> , 2005 , 38, 17	8 9 :97	35

(2002-2005)

47	Orthogonal surface-grafted polymer gradients: A versatile combinatorial platform. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 3384-3394	2.6	50
46	Designing pattern-recognition surfaces for selective adsorption of copolymer sequences using lattice monte carlo simulation. <i>Physical Review Letters</i> , 2005 , 94, 078103	7.4	40
45	Assembly of Nanoparticles using Surface-Grafted Orthogonal Polymer Gradients. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 270-274	4.8	69
44	Mapping Surface Chemistry and Molecular Orientation with Combinatorial Near-Edge X-Ray Absorption Fine Structure Spectroscopy. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 141-149	4.8	24
43	Monte Carlo Simulations of Copolymer Adsorption at Planar Chemically Patterned Surfaces: Effect of Interfacial Interaction. <i>Macromolecular Theory and Simulations</i> , 2004 , 13, 219-229	1.5	18
42	Fast directed motion of "fakir" droplets. <i>Langmuir</i> , 2004 , 20, 9893-6	4	38
41	Dewetting behavior of a block copolymer/homopolymer thin film on an immiscible homopolymer substrate. <i>Langmuir</i> , 2004 , 20, 8659-67	4	18
40	Dewetting of Star Nanogel/Homopolymer Blends from an Immiscible Homopolymer Substrate. <i>Macromolecules</i> , 2004 , 37, 7857-7860	5.5	10
39	Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients. <i>Nanotechnology</i> , 2003 , 14, 1145-1152	3.4	120
38	Formation of Grafted Macromolecular Assemblies with a Gradual Variation of Molecular Weight on Solid Substrates. <i>Macromolecules</i> , 2003 , 36, 3449-3451	5.5	101
37	Formation and Properties of Anchored Polymers with a Gradual Variation of Grafting Densities on Flat Substrates. <i>Macromolecules</i> , 2003 , 36, 2448-2453	5.5	172
36	Formation of surface-grafted copolymer brushes with continuous composition gradients. <i>Chemical Communications</i> , 2003 , 1350-1	5.8	55
35	Development of High-Throughput substrates for Generating Two-Dimensional Nanoparticles Assemblies and for Screening Protein Adsorption. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 804, 178		
34	Combinatorial near-edge x-ray absorption fine structure: Simultaneous determination of molecular orientation and bond concentration on chemically heterogeneous surfaces. <i>Applied Physics Letters</i> , 2003 , 82, 266-268	3.4	28
33	Monte Carlo simulations of copolymer adsorption at planar chemically patterned surfaces: Effect of surface domain sizes. <i>Journal of Chemical Physics</i> , 2003 , 119, 5274-5280	3.9	29
32	Copolymer Adsorption on Planar Chemically Heterogeneous Substrates: The Interplay between the Monomer Sequence Distribution and Interaction Energies. <i>Macromolecular Theory and Simulations</i> , 2002 , 11, 481	1.5	18
31	Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. <i>Journal of Colloid and Interface Science</i> , 2002 , 254, 306-15	9.3	602
30	Application of ion scattering techniques to characterize polymer surfaces and interfaces. <i>Materials Science and Engineering Reports</i> , 2002 , 38, 107-180	30.9	94

29	Accounting for Auger yield energy loss for improved determination of molecular orientation using soft x-ray absorption spectroscopy. <i>Journal of Applied Physics</i> , 2002 , 92, 7070-7079	2.5	52
28	Computer simulation of copolymer phase behavior. <i>Journal of Chemical Physics</i> , 2002 , 117, 10329-1033	83.9	71
27	Formation of Self-Assembled Monolayers of Semifluorinated and Hydrocarbon Chlorosilane Precursors on Silica Surfaces from Liquid Carbon Dioxide. <i>Langmuir</i> , 2002 , 18, 6170-6179	4	24
26	Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide. Journal of the American Chemical Society, 2002, 124, 9394-5	16.4	261
25	Molecular Orientation and Grafting Density in Semifluorinated Self-Assembled Monolayers of Mono-, Di-, and Trichloro Silanes on Silica Substrates. <i>Langmuir</i> , 2002 , 18, 9307-9311	4	68
24	Fabricating Planar Nanoparticle Assemblies with Number Density Gradients. <i>Langmuir</i> , 2002 , 18, 5640-	56 ₄ 43	94
23	Self-consistent field study of copolymer adsorption at planar chemically foughfurfaces: an interplay between the substrate chemical pattern and copolymer sequence distribution. <i>Advances in Colloid and Interface Science</i> , 2001 , 94, 105-134	14.3	19
22	Copolymer adsorption on planar substrates with a random distribution of chemical heterogeneities. <i>Journal of Chemical Physics</i> , 2001 , 115, 4873-4882	3.9	22
21	Copolymer-assisted generation of three-dimensional patterns by replicating two-dimensional substrate motifs. <i>Physical Review E</i> , 2001 , 63, 022601	2.4	18
20	Polymer Chain Relaxation: Surface Outpaces Bulk. <i>Macromolecules</i> , 2001 , 34, 5081-5082	5.5	89
19	Preparing High-Density Polymer Brushes by Mechanically Assisted Polymer Assembly. <i>Macromolecules</i> , 2001 , 34, 684-686	5.5	42
18	Processing of Polyamide 11 with Supercritical Carbon Dioxide. <i>Industrial & amp; Engineering Chemistry Research</i> , 2001 , 40, 5570-5577	3.9	24
17	Tuning the Surface Properties of Elastomers Using Hydrocarbon-Based Mechanically Assembled Monolayers. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 710, 1		2
16	Monte Carlo Simulations of Copolymer Adsorption from Copolymer / Homopolymer Melts at Planar Chemically Patterned Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 710, 1		
15	Temperature Dependence of Molecular Orientation on the Surfaces of Semifluorinated Polymer Thin Films. <i>Langmuir</i> , 2000 , 16, 1993-1997	4	76
14	Effect of Changing Molecular End Groups on Surface Properties: Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with LF2H End Groups. Macromolecules, 2000, 33, 8012-8019	5.5	49
13	Molecular Orientation of Single and Two-Armed Monodendron Semifluorinated Chains on Boft□ and ℍardြGurfaces Studied Using NEXAFS. <i>Macromolecules</i> , 2000 , 33, 6068-6077	5.5	50
12	Surface Stability in Liquid-Crystalline Block Copolymers with Semifluorinated Monodendron Side Groups. <i>Macromolecules</i> , 2000 , 33, 6106-6119	5.5	103

LIST OF PUBLICATIONS

11	The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films. <i>Macromolecules</i> , 2000 , 33, 1882-1887	5.5	109
10	Transfer of a chemical substrate pattern into an island-forming diblock copolymer film. <i>Journal of Chemical Physics</i> , 1999 , 111, 11101-11110	3.9	60
9	The interface between immiscible polymers studied by low-energy forward recoil spectrometry and neutron reflectivity. <i>Polymer</i> , 1999 , 40, 4223-4228	3.9	17
8	Surface Enrichment in a Miscible Random Copolymer Blend: Influence of Polydispersity and Architecture. <i>Macromolecules</i> , 1999 , 32, 4098-4105	5.5	7
7	Wetting reversal transition in phase-separated polymer mixtures. <i>Macromolecular Symposia</i> , 1999 , 139, 77-85	0.8	1
6	Effect of Molecular Weight on the Interfacial Excess, Tension, and Width in a Homopolymer/Binary Polymer Blend System. <i>Macromolecules</i> , 1998 , 31, 870-878	5.5	25
5	Wetting of Substrates with Phase-Separated Binary Polymer Mixtures. <i>Physical Review Letters</i> , 1997 , 78, 4946-4949	7.4	64
4	A self-consistent field study of the wetting transition in binary polymer blends. <i>Journal of Chemical Physics</i> , 1997 , 106, 1257-1263	3.9	6
3	Mean-field theory of the interface between a homopolymer and a binary-polymer mixture. <i>Journal of Chemical Physics</i> , 1996 , 105, 10134-10144	3.9	6
2	Surface-Grafted Polymer Gradients: Formation, Characterization, and Applications51-124		110
1	Surface-Bound Microgels for Separation, Sensing, and Biomedical Applications. <i>Advanced Functional Materials</i> ,2104164	15.6	7