
Charles E Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3177308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science, 2002, 296, 2158-2162.	6.0	2,154
2	Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468, 647-652.	13.7	1,481
3	Release of invasive plants from fungal and viral pathogens. Nature, 2003, 421, 625-627.	13.7	1,025
4	Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 1999, 2, 286-293.	3.0	723
5	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	13.7	669
6	Biotic interactions and plant invasions. Ecology Letters, 2006, 9, 726-740.	3.0	649
7	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	3.0	612
8	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	6.0	463
9	Pathogen Spillover in Disease Epidemics. American Naturalist, 2004, 164, S79-S89.	1.0	415
10	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	4.7	403
11	EFFECTS OF GRASSLAND PLANT SPECIES DIVERSITY, ABUNDANCE, AND COMPOSITION ON FOLIAR FUNGAL DISEASE. Ecology, 2002, 83, 1713-1726.	1.5	376
12	ENEMY RELEASE? AN EXPERIMENT WITH CONGENERIC PLANT PAIRS AND DIVERSE ABOVE- AND BELOWGROUND ENEMIES. Ecology, 2005, 86, 2979-2989.	1.5	344
13	Parasites, pathogens, and invasions by plants and animals. Frontiers in Ecology and the Environment, 2004, 2, 183-190.	1.9	342
14	Effects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology, 2003, 9, 438-451.	4.2	243
15	Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7899-7904.	3.3	210
16	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	1.5	208
17	Controls on pathogen species richness in plants' introduced and native ranges: roles of residence time, range size and host traits. Ecology Letters, 2010, 13, 1525-1535.	3.0	150
18	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	5.8	143

CHARLES E MITCHELL

#	Article	IF	CITATIONS
19	The community ecology of pathogens: coinfection, coexistence and community composition. Ecology Letters, 2015, 18, 401-415.	3.0	135
20	Host physiological phenotype explains pathogen reservoir potential. Ecology Letters, 2010, 13, 1221-1232.	3.0	132
21	Trophic control of grassland production and biomass by pathogens. Ecology Letters, 2003, 6, 147-155.	3.0	123
22	Local context drives infection of grasses by vectorâ€borne generalist viruses. Ecology Letters, 2010, 13, 810-818.	3.0	79
23	Consumers indirectly increase infection risk in grassland food webs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 503-506.	3.3	72
24	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	4.2	70
25	Non-random biodiversity loss underlies predictable increases in viral disease prevalence. Journal of the Royal Society Interface, 2014, 11, 20130947.	1.5	69
26	A multivariate test of disease risk reveals conditions leading to disease amplification. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171340.	1.2	66
27	The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Research, 2011, 159, 95-100.	1.1	65
28	Viral diversity and prevalence gradients in North American Pacific Coast grasslands. Ecology, 2010, 91, 721-732.	1.5	64
29	Interactions among symbionts operate across scales to influence parasite epidemics. Ecology Letters, 2017, 20, 1285-1294.	3.0	62
30	Past is prologue: host community assembly and the risk of infectious disease over time. Ecology Letters, 2019, 22, 138-148.	3.0	44
31	Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland. Oikos, 2014, 123, 214-224.	1.2	39
32	Elevated <scp>CO</scp> ₂ spurs reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus. New Phytologist, 2013, 199, 541-549.	3.5	36
33	Effects of native diversity, soil nutrients, and natural enemies on exotic invasion in experimental plant communities. Ecology, 2017, 98, 1409-1418.	1.5	36
34	Richness and Composition of Niche-Assembled Viral Pathogen Communities. PLoS ONE, 2013, 8, e55675.	1.1	32
35	Why Is Living Fast Dangerous? Disentangling the Roles of Resistance and Tolerance of Disease. American Naturalist, 2014, 184, 172-187.	1.0	32
36	Joint effects of nutrient addition and enemy exclusion on exotic plant success. Ecology, 2016, 97, 3337-3345.	1.5	32

CHARLES E MITCHELL

#	Article	IF	CITATIONS
37	Fungal endophyte infection and host genetic background jointly modulate host response to an aphidâ€ŧransmitted viral pathogen. Journal of Ecology, 2013, 101, 1007-1018.	1.9	31
38	A growth–defense trade-off is general across native and exotic grasses. Oecologia, 2019, 191, 609-620.	0.9	31
39	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	6.0	30
40	Viral pathogen production in a wild grass host driven by host growth and soil nitrogen. New Phytologist, 2015, 207, 760-768.	3.5	27
41	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	1.9	25
42	Within-Host Niche Differences and Fitness Trade-offs Promote Coexistence of Plant Viruses. American Naturalist, 2016, 187, E13-E26.	1.0	24
43	Modeling landscapeâ€scale pathogen spillover between domesticated and wild hosts: Asian soybean rust and kudzu. Ecological Applications, 2010, 20, 582-592.	1.8	23
44	Disease dynamics in plant communities. , 2006, , 58-72.		23
45	Direct and indirect effects of viral pathogens and the environment on invasive grass fecundity in Pacific Coast grasslands. Journal of Ecology, 2009, 97, 1264-1273.	1.9	22
46	A host immune hormone modifies parasite species interactions and epidemics: insights from a field manipulation. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182075.	1.2	22
47	The role of viruses in biological invasions: friend or foe?. Current Opinion in Virology, 2011, 1, 68-72.	2.6	20
48	Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA. Science of the Total Environment, 2008, 398, 76-86.	3.9	18
49	Climate drivers, host identity and fungal endophyte infection determine virus prevalence in a grassland ecosystem. Journal of Ecology, 2014, 102, 690-699.	1.9	17
50	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	6.0	16
51	The role of habitat filtering in the leaf economics spectrum and plant susceptibility to pathogen infection. Journal of Ecology, 2016, 104, 1768-1777.	1.9	14
52	Eutrophication, biodiversity loss, and species invasions modify the relationship between host and parasite richness during host community assembly. Global Change Biology, 2020, 26, 4854-4867.	4.2	13
53	Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants. Current Opinion in Plant Biology, 2017, 38, 78-83.	3.5	9
54	Herbivore and Fungal Pathogen Exclusion Affects the Seed Production of Four Common Grassland Species. PLoS ONE, 2010, 5, e12022.	1.1	9

CHARLES E MITCHELL

#	Article	IF	CITATIONS
55	Parasites, niche modification and the host microbiome: A field survey of multiple parasites. Molecular Ecology, 2021, 30, 2404-2416.	2.0	8
56	Indirect interactions among co-infecting parasites and a microbial mutualist impact disease progression. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211313.	1.2	8
57	Characteristics and drivers of plant virus community spatial patterns in US west coast grasslands. Oikos, 2017, 126, 1281-1290.	1.2	7
58	Differential Impacts of Virus Diversity on Biomass Production of a Native and an Exotic Grass Host. PLoS ONE, 2015, 10, e0134355.	1.1	7
59	Traitâ€based variation in host contribution to pathogen transmission across species and resource supplies. Ecology, 2020, 101, e03164.	1.5	6
60	Parasites, Pathogens, and Invasions by Plants and Animals. Frontiers in Ecology and the Environment, 2004, 2, 183.	1.9	3
61	Assessing Environmental Changes in Grasslands. Science, 2003, 299, 1844-1845.	6.0	2
62	Traitâ€Based Variation in Host Contribution to Pathogen Transmission Across Species and Resource Supplies. Bulletin of the Ecological Society of America, 2021, 102, e01796.	0.2	0
63	A Microbial Mutualist Within Host Individuals Increases Parasite Transmission Between Host Individuals: Evidence From a Field Mesocosm Experiment. Frontiers in Microbiology, 2022, 13, 824211.	1.5	0