Tom Vanden Berghe

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3177257/tom-vanden-berghe-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

107	17,891	54	116
papers	citations	h-index	g-index
116 ext. papers	21,948 ext. citations	11.3 avg, IF	6.85 L-index

#	Paper	IF	Citations
107	Targeting ferroptosis protects against experimental (multi)organ dysfunction and death <i>Nature Communications</i> , 2022 , 13, 1046	17.4	6
106	Luminescent Human (IPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After Oxygen-glucose Deprivation <i>Neurotherapeutics</i> , 2022 , 1	6.4	1
105	Ferroptosis: Biological Rust of Lipid Membranes. <i>Antioxidants and Redox Signaling</i> , 2021 , 35, 487-509	8.4	10
104	Viral dosing of influenza A infection reveals involvement of RIPK3 and FADD, but not MLKL. <i>Cell Death and Disease</i> , 2021 , 12, 471	9.8	3
103	Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2021 , 204, 667-681	10.2	15
102	Emerging immune and cell death mechanisms in stroke: Saponins as therapeutic candidates. <i>Brain, Behavior, & Immunity - Health</i> , 2020 , 9, 100152	5.1	2
101	Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. <i>Nature Medicine</i> , 2020 , 26, 919-931	50.5	55
100	Nanoscopic X-ray imaging and quantification of the iron cellular architecture within single fibroblasts of Friedreich ataxia patients. <i>Journal of Synchrotron Radiation</i> , 2020 , 27, 185-198	2.4	2
99	Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. <i>Cell Death and Disease</i> , 2020 , 11, 1003	9.8	27
98	Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. <i>Cell Death and Disease</i> , 2020 , 11, 922	9.8	30
97	Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. <i>ESC Heart Failure</i> , 2020 , 7, 3772	3.7	38
96	Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. <i>Biochemical Pharmacology</i> , 2020 , 173, 113602	6	42
95	Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 2019, 35, 830-849	24.3	569
94	Caspase-3 probes for PET imaging of apoptotic tumor response to anticancer therapy. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 4801-4824	3.9	13
93	The molecular machinery of regulated cell death. <i>Cell Research</i> , 2019 , 29, 347-364	24.7	583
92	Survival of Single Positive Thymocytes Depends upon Developmental Control of RIPK1 Kinase Signaling by the IKK Complex Independent of NF- B . <i>Immunity</i> , 2019 , 50, 348-361.e4	32.3	13
91	Ferroptosis in Cancer Disease 2019 , 285-301		

(2016-2019)

90	Paving the way for precision medicine v2.0 in intensive care by profiling necroinflammation in biofluids. <i>Cell Death and Differentiation</i> , 2019 , 26, 83-98	12.7	7
89	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. <i>Cell Death and Differentiation</i> , 2019 , 26, 395-408	12.7	185
88	Water-soluble withaferin A polymer prodrugs via a drug-functionalized RAFT CTA approach. <i>European Polymer Journal</i> , 2019 , 110, 313-318	5.2	6
87	Ubiquitin-Mediated Regulation of RIPK1 Kinase Activity Independent of IKK and MK2. <i>Molecular Cell</i> , 2018 , 69, 566-580.e5	17.6	61
86	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. <i>Cell Death and Differentiation</i> , 2018 , 25, 486-541	12.7	2160
85	Nanoscopic X-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich ataxia fibroblasts. <i>PLoS ONE</i> , 2018 , 13, e0190495	3.7	14
84	Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. <i>Nature Communications</i> , 2018 , 9, 4846	17.4	30
83	Discovery of Novel, Drug-Like Ferroptosis Inhibitors with in Vivo Efficacy. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 10126-10140	8.3	33
82	MLKL Reveals Its Friendly Face: A Role in Nerve Regeneration. <i>Molecular Cell</i> , 2018 , 72, 397-399	17.6	1
81	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. <i>Journal of Clinical Investigation</i> , 2018 , 128, 3341-3355	15.9	215
80	Impact of caspase-1/11, -3, -7, or IL-1/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease. <i>Cell Death Discovery</i> , 2017 , 3, 17012	6.9	11
79	Initiation and execution mechanisms of necroptosis: an overview. <i>Cell Death and Differentiation</i> , 2017 , 24, 1184-1195	12.7	235
78	Feasibility study for clinical application of caspase-3 inhibitors in Pemphigus vulgaris. <i>Experimental Dermatology</i> , 2017 , 26, 1274-1277	4	4
77	Preconditioning with Lipopolysaccharide or Lipoteichoic Acid Protects against Mammary Infection in Mice. <i>Frontiers in Immunology</i> , 2017 , 8, 833	8.4	19
76	How do we fit ferroptosis in the family of regulated cell death?. <i>Cell Death and Differentiation</i> , 2017 , 24, 1991-1998	12.7	62
75	A real-time fluorometric method for the simultaneous detection of cell death type and rate. <i>Nature Protocols</i> , 2016 , 11, 1444-54	18.8	31
74	Novel Ferroptosis Inhibitors with Improved Potency and ADME Properties. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 2041-53	8.3	54
73	An outline of necrosome triggers. <i>Cellular and Molecular Life Sciences</i> , 2016 , 73, 2137-52	10.3	73

7 2	Mitochondria and NADPH oxidases are the major sources of TNF-Acycloheximide-induced oxidative stress in murine intestinal epithelial MODE-K cells. <i>Cellular Signalling</i> , 2015 , 27, 1141-58	4.9	18
71	Passenger Mutations Confound Interpretation of All Genetically Modified Congenic Mice. <i>Immunity</i> , 2015 , 43, 200-9	32.3	128
70	Molecular crosstalk between apoptosis, necroptosis, and survival signaling. <i>Molecular and Cellular Oncology</i> , 2015 , 2, e975093	1.2	121
69	Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. <i>Journal of Molecular Histology</i> , 2015 , 46, 443-55	3.3	4
68	Take my breath away: necrosis in kidney transplants kills the lungs!. <i>Kidney International</i> , 2015 , 87, 680-	-2 9.9	6
67	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. <i>Cell Death and Differentiation</i> , 2015 , 22, 58-73	12.7	643
66	Regulated necrosis: the expanding network of non-apoptotic cell death pathways. <i>Nature Reviews Molecular Cell Biology</i> , 2014 , 15, 135-47	48.7	1063
65	Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. <i>Cell Death and Disease</i> , 2014 , 5, e1004	9.8	148
64	Synchronized renal tubular cell death involves ferroptosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 16836-41	11.5	519
63	Necroptosis, in vivo detection in experimental disease models. <i>Seminars in Cell and Developmental Biology</i> , 2014 , 35, 2-13	7.5	108
62	Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2014 , 189, 282-91	10.2	109
61	Non-classical proIL-1beta activation during mammary gland infection is pathogen-dependent but caspase-1 independent. <i>PLoS ONE</i> , 2014 , 9, e105680	3.7	20
60	Non-apoptotic functions of caspase-7 during osteogenesis. <i>Cell Death and Disease</i> , 2014 , 5, e1366	9.8	23
59	Necroptosis: A Novel Way of Regulated Necrosis with Large Pathophysiological Implications 2014 , 153	-161	
58	The Potential Role of Necroptosis in Diseases 2014 , 1-21		1
57	Methods to Study and Distinguish Necroptosis 2014 , 335-361		2
56	An inactivating caspase-11 passenger mutation muddles sepsis research. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 188, 120-1	10.2	14
55	Caspase-7 participates in differentiation of cells forming dental hard tissues. <i>Development Growth and Differentiation</i> , 2013 , 55, 615-21	3	20

54	Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 2013, 61, 117-29	4.6	163
53	Caspase-3 and Caspase-7 2013 , 2256-2265		
52	Intermediate domain of receptor-interacting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis. <i>Journal of Biological Chemistry</i> , 2012 , 287, 14863-7	·2 ^{5.4}	34
51	Autophagy: for better or for worse. <i>Cell Research</i> , 2012 , 22, 43-61	24.7	304
50	Caspase-7 in molar tooth development. Archives of Oral Biology, 2012, 57, 1474-81	2.8	13
49	Beclin1: a role in membrane dynamics and beyond. <i>Autophagy</i> , 2012 , 8, 6-17	10.2	222
48	Many stimuli pull the necrotic trigger, an overview. Cell Death and Differentiation, 2012, 19, 75-86	12.7	290
47	Programmed necrosis from molecules to health and disease. <i>International Review of Cell and Molecular Biology</i> , 2011 , 289, 1-35	6	125
46	Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. <i>Cell Research</i> , 2011 , 21, 290-304	24.7	527
45	RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. <i>Immunity</i> , 2011 , 35, 908-18	32.3	388
44	Fine-tuning nucleophosmin in macrophage differentiation and activation. <i>Blood</i> , 2011 , 118, 4694-704	2.2	25
43	cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. <i>Cell Death and Differentiation</i> , 2011 , 18, 656-65	12.7	251
42	Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. <i>Cell Death and Differentiation</i> , 2011 , 18, 581-8	12.7	386
41	The death-fold superfamily of homotypic interaction motifs. <i>Trends in Biochemical Sciences</i> , 2011 , 36, 541-52	10.3	112
40	Effect of LPS, dsRNA or interferons on the phagocytosis of dying cells or mycobacteria by macrophages. <i>BMC Proceedings</i> , 2011 , 5,	2.3	78
39	Role of IL-1land the Nlrp3/caspase-1/IL-1laxis in cigarette smoke-induced pulmonary inflammation and COPD. <i>European Respiratory Journal</i> , 2011 , 38, 1019-28	13.6	168
38	Interaction patches of procaspase-1 caspase recruitment domains (CARDs) are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor B signaling. <i>Journal of Biological Chemistry</i> , 2011 , 286, 35874-35882	5.4	34
37	NLRP3/caspase-1-independent IL-1beta production mediates diesel exhaust particle-induced pulmonary inflammation. <i>Journal of Immunology</i> , 2011 , 187, 3331-7	5.3	66

36	TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. <i>Cell Death and Disease</i> , 2011 , 2, e230	9.8	163
35	The mitochondrial serine protease HtrA2/Omi cleaves RIP1 during apoptosis of Ba/F3 cells induced by growth factor withdrawal. <i>Cell Research</i> , 2010 , 20, 421-33	24.7	21
34	Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. <i>Cell Death and Differentiation</i> , 2010 , 17, 922-30	12.7	382
33	Molecular mechanisms of necroptosis: an ordered cellular explosion. <i>Nature Reviews Molecular Cell Biology</i> , 2010 , 11, 700-14	48.7	1603
32	The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Science Signaling, 2010, 3, re4	8.8	348
31	Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. <i>Cell Death and Disease</i> , 2010 , 1, e18	9.8	464
30	Expression of calcium-sensing receptor in quail granulosa explants: a key to survival during folliculogenesis. <i>Anatomical Record</i> , 2010 , 293, 890-9	2.1	6
29	Inhibition of spontaneous neutrophil apoptosis by parabutoporin acts independently of NADPH oxidase inhibition but by lipid raft-dependent stimulation of Akt. <i>Journal of Leukocyte Biology</i> , 2009 , 85, 497-507	6.5	20
28	Proteome-wide substrate analysis indicates substrate exclusion as a mechanism to generate caspase-7 versus caspase-3 specificity. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 2700-14	7.6	57
27	Caspase substrates: easily caught in deep waters?. <i>Trends in Biotechnology</i> , 2009 , 27, 680-8	15.1	38
26	Major cell death pathways at a glance. Microbes and Infection, 2009, 11, 1050-62	9.3	258
25	RIP kinases at the crossroads of cell death and survival. <i>Cell</i> , 2009 , 138, 229-32	56.2	374
24	Necrosis: Molecular Mechanisms and Physiological Roles 2009 , 599-633		1
23	Inflammatory mediators in Escherichia coli-induced mastitis in mice. <i>Comparative Immunology, Microbiology and Infectious Diseases</i> , 2008 , 31, 551-65	2.6	31
22	Necrotic cell death and ThecrostatinsT now we can control cellular explosion. <i>Trends in Biochemical Sciences</i> , 2008 , 33, 352-5	10.3	23
21	Apoptosis and necrosis: detection, discrimination and phagocytosis. <i>Methods</i> , 2008 , 44, 205-21	4.6	465
20	Necrotic cell death, a controlled way of cellular explosion 2008 , 189-190		
19	Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. <i>Methods in Enzymology</i> , 2008 , 442, 307-41	1.7	92

(2000-2008)

18	Molecular mechanisms and pathophysiology of necrotic cell death. <i>Current Molecular Medicine</i> , 2008 , 8, 207-20	2.5	255
17	Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. <i>Molecular and Cellular Proteomics</i> , 2008 , 7, 2350-63	7.6	221
16	Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. <i>Phytotherapy Research</i> , 2008 , 22, 197-203	6.7	65
15	Caspases in cell survival, proliferation and differentiation. <i>Cell Death and Differentiation</i> , 2007 , 14, 44-5	5 _{12.7}	442
14	RIP1, a kinase on the crossroads of a cell's decision to live or die. <i>Cell Death and Differentiation</i> , 2007 , 14, 400-10	12.7	359
13	A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. <i>Biochemical Society Transactions</i> , 2007 , 35, 1508-11	5.1	58
12	NADPH oxidases: new players in TNF-induced necrotic cell death. <i>Molecular Cell</i> , 2007 , 26, 769-71	17.6	34
11	Necrosis is associated with IL-6 production but apoptosis is not. <i>Cellular Signalling</i> , 2006 , 18, 328-35	4.9	79
10	Caspases leave the beaten track: caspase-mediated activation of NF-kappaB. <i>Journal of Cell Biology</i> , 2006 , 173, 165-71	7.3	51
9	Caspase inhibitors promote alternative cell death pathways. <i>SciencemSTKE: Signal Transduction Knowledge Environment</i> , 2006 , 2006, pe44		161
8	Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2006 , 1757, 1371-87	4.6	464
7	Fas-Induced Necrosis 2006 , 51-68		
6	More than one way to die: methods to determine TNF-induced apoptosis and necrosis. <i>Methods in Molecular Medicine</i> , 2004 , 98, 101-26		22
5	Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. <i>Journal of Biological Chemistry</i> , 2004 , 279, 7925-33	5.4	91
4	Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. <i>Journal of Biological Chemistry</i> , 2003 , 278, 5622-9	5.4	127
3	Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. <i>Cell Death and Differentiation</i> , 2002 , 9, 981-94	12.7	117
2	Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. <i>Cell Death and Differentiation</i> , 2001 , 8, 829-40	12.7	180
1	Structure/Function analysis of p55 tumor necrosis factor receptor and fas-associated death domain. Effect on necrosis in L929sA cells. <i>Journal of Biological Chemistry</i> , 2000 , 275, 37596-603	5.4	29