
Rafal M Kaminski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176936/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Connectivity Mapping Using a Novel sv2a Loss-of-Function Zebrafish Epilepsy Model as a Powerful Strategy for Anti-epileptic Drug Discovery. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	2
2	A systems-level framework for anti-epilepsy drug discovery. Neuropharmacology, 2020, 170, 107868.	2.0	15
3	Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?. Epilepsia, 2020, 61, 359-386.	2.6	57
4	Pharmacological Profile of the Novel Antiepileptic Drug Candidate Padsevonil: Characterization in Rodent Seizure and Epilepsy Models. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 11-20.	1.3	27
5	Padsevonil randomized Phase IIa trial in treatment-resistant focal epilepsy: a translational approach. Brain Communications, 2020, 2, fcaa183.	1.5	11
6	Pharmacological Profile of the Novel Antiepileptic Drug Candidate Padsevonil: Interactions with Synaptic Vesicle 2 Proteins and the GABAA Receptor. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 1-10.	1.3	25
7	Anticonvulsant and antiepileptogenic effects of system xcâ^' inactivation in chronic epilepsy models. Epilepsia, 2019, 60, 1412-1423.	2.6	20
8	Intrinsic Inflammation Is a Potential Anti-Epileptogenic Target in the Organotypic Hippocampal Slice Model. Neurotherapeutics, 2018, 15, 470-488.	2.1	27
9	n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain, 2018, 141, 3130-3143.	3.7	55
10	A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nature Communications, 2018, 9, 3561.	5.8	75
11	Genome-wide analysis of differential RNA editing in epilepsy. Genome Research, 2017, 27, 440-450.	2.4	73
12	Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia, 2017, 58, 27-38.	2.6	131
13	Inhibition of glutamate decarboxylase (GAD) by ethyl ketopentenoate (EKP) induces treatment-resistant epileptic seizures in zebrafish. Scientific Reports, 2017, 7, 7195.	1.6	28
14	Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biology, 2016, 17, 245.	3.8	75
15	Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs, 2016, 30, 1055-1077.	2.7	119
16	Brivaracetam: Rationale for discovery and preclinical profile of a selective <scp>SV</scp> 2A ligand for epilepsy treatment. Epilepsia, 2016, 57, 538-548.	2.6	137
17	Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nature Neuroscience, 2016, 19, 223-232.	7.1	131
18	Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods, 2016, 260, 2-25.	1.3	93

RAFAL M KAMINSKI

#	Article	IF	CITATIONS
19	Different MicroRNA Profiles in Chronic Epilepsy Versus Acute Seizure Mouse Models. Journal of Molecular Neuroscience, 2015, 55, 466-479.	1.1	63
20	Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nature Communications, 2015, 6, 6031.	5.8	158
21	Cross-species pharmacological characterization of the allylglycine seizure model in mice and larval zebrafish. Epilepsy and Behavior, 2015, 45, 53-63.	0.9	41
22	Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy and Behavior, 2015, 49, 55-60.	0.9	13
23	Genetic background of mice strongly influences treatment resistance in the 6ÂHz seizure model. Epilepsia, 2015, 56, 310-318.	2.6	42
24	Low potency and limited efficacy of antiepileptic drugs in the mouse 6Hz corneal kindling model. Epilepsy Research, 2014, 108, 675-683.	0.8	43
25	The Potential of Antiseizure Drugs and Agents that Act on Novel Molecular Targets as Antiepileptogenic Treatments. Neurotherapeutics, 2014, 11, 385-400.	2.1	76
26	Nrf2 defense pathway: Experimental evidence for its protective role in epilepsy. Annals of Neurology, 2013, 74, 560-568.	2.8	105
27	Rapid epileptogenesis in the mouse pilocarpine model: Video-EEG, pharmacokinetic and histopathological characterization. Experimental Neurology, 2012, 238, 156-167.	2.0	100
28	Finding a better drug for epilepsy: Preclinical screening strategies and experimental trial design. Epilepsia, 2012, 53, 1860-1867.	2.6	69
29	Electrical, molecular and behavioral effects of interictal spiking in the rat. Neurobiology of Disease, 2012, 47, 92-101.	2.1	40
30	11-Deoxycortisol impedes GABAergic neurotransmission and induces drug-resistant status epilepticus in mice. Neuropharmacology, 2011, 60, 1098-1108.	2.0	10
31	Effects of Cocaine-Kindling on the Expression of NMDA Receptors and Glutamate Levels in Mouse Brain. Neurochemical Research, 2011, 36, 146-152.	1.6	17
32	Brivaracetam does not alter spatial learning and memory in both normal and amygdala-kindled rats. Epilepsy Research, 2010, 91, 74-83.	0.8	22
33	Targeting SV2A for discovery of antiepileptic drugs. Epilepsia, 2010, 51, 83-83.	2.6	6
34	Proepileptic phenotype of SV2Aâ€deficient mice is associated with reduced anticonvulsant efficacy of levetiracetam. Epilepsia, 2009, 50, 1729-1740.	2.6	97
35	SV2A protein is a broad-spectrum anticonvulsant target: Functional correlation between protein binding and seizure protection in models of both partial and generalized epilepsy. Neuropharmacology, 2008, 54, 715-720.	2.0	151
36	Effects of chronic treatment with levetiracetam on hippocampal field responses after pilocarpine-induced status epilepticus in rats. Brain Research Bulletin, 2008, 77, 282-285.	1.4	37

RAFAL M KAMINSKI

#	Article	IF	CITATIONS
37	Pharmacological and genetic manipulation of kappa opioid receptors: Effects on cocaine- and pentylenetetrazol-induced convulsions and seizure kindling. Neuropharmacology, 2007, 52, 895-903.	2.0	18
38	The Pheromone Androstenol (5α-Androst-16-en-3α-ol) Is a Neurosteroid Positive Modulator of GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 694-703.	1.3	31
39	Anticonvulsant Activity of Androsterone and Etiocholanolone. Epilepsia, 2005, 46, 819-827.	2.6	93
40	Genetic deletion of the norepinephrine transporter decreases vulnerability to seizures. Neuroscience Letters, 2005, 382, 51-55.	1.0	43
41	Allopregnanolone Analogs That Positively Modulate GABAA Receptors Protect against Partial Seizures Induced by 6-Hz Electrical Stimulation in Mice. Epilepsia, 2004, 45, 864-867.	2.6	167