John D Coates

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3176623/john-d-coates-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

107 6,752 37 82 g-index

141 8,102 8 25.77 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
107	Isolation of a Dissimilatory Iodate-Reducing From a Freshwater Creek in the San Francisco Bay Area <i>Frontiers in Microbiology</i> , 2021 , 12, 804181	5.7	O
106	The diversity and evolution of microbial dissimilatory phosphite oxidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
105	Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the worldる oceans. <i>ISME Journal</i> , 2021 ,	11.9	2
104	An uncharacterized clade in the DMSO reductase family of molybdenum oxidoreductases is a new type of chlorate reductase. <i>Environmental Microbiology Reports</i> , 2020 , 12, 534-539	3.7	1
103	Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle. <i>ISME Journal</i> , 2020 , 14, 1194-1206	11.9	5
102	Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. <i>ISME Journal</i> , 2020 , 14, 450-462	11.9	4
101	Tungstate Control of Microbial Sulfidogenesis and Souring of the Engineered Environment. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	2
100	Biofilm Feedbacks Alter Hydrological Characteristics of Fractured Rock Impacting Sulfidogenesis and Treatment. <i>Energy & Documents</i> , 2019, 33, 10476-10486	4.1	1
99	Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate. <i>Frontiers in Microbiology</i> , 2019 , 10, 654	5.7	3
98	Adaptation of Desulfovibrio alaskensis G20 to perchlorate, a specific inhibitor of sulfate reduction. <i>Environmental Microbiology</i> , 2019 , 21, 1395-1406	5.2	8
97	Perchlorate and Its Application in the Oil and Gas Industry 2019 , 109-128		1
96	Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. <i>Microbiology (United Kingdom)</i> , 2019 , 165, 254-269	2.9	14
95	Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. <i>ISME Journal</i> , 2018 , 12, 1568-1581	11.9	24
94	Comprehensive Analysis of Changes in Crude Oil Chemical Composition during Biosouring and Treatments. <i>Environmental Science & Environmental Science &</i>	10.3	10
93	Dissimilatory Sulfate Reduction Under High Pressure by G20. Frontiers in Microbiology, 2018 , 9, 1465	5.7	7
92	Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference. <i>Frontiers in Microbiology</i> , 2018 , 9, 376	5.7	6
91	Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO fixation pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> . 2018 . 115. E92-E101	11.5	61

(2015-2018)

90	Microbial Sulfate Reduction and Perchlorate Inhibition in a Novel Mesoscale Tank Experiment. <i>Energy & Energy &</i>	4.1	4	
89	Mitigating Sulfidogenesis With Simultaneous Perchlorate and Nitrate Treatments. <i>Frontiers in Microbiology</i> , 2018 , 9, 2305	5.7	5	
88	Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment. <i>Frontiers in Microbiology</i> , 2018 , 9, 1575	5.7	10	
87	Mechanism of HS Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism PS. <i>MBio</i> , 2017 , 8,	7.8	23	
86	High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction. <i>Environmental Science & Environmental Science & </i>	10.3	14	
85	Biotechnological Applications of Microbial (Per)chlorate Reduction. <i>Microorganisms</i> , 2017 , 5,	4.9	16	
84	Microbial metal resistance and metabolism across dynamic landscapes: high-throughput environmental microbiology. <i>F1000Research</i> , 2017 , 6, 1026	3.6	6	
83	Reactive Transport Model of Sulfur Cycling as Impacted by Perchlorate and Nitrate Treatments. <i>Environmental Science & Environmental Science & Environ</i>	10.3	25	
82	Enrichment and Isolation of Chloroxyanion-Respiring Hydrocarbon Oxidizers. <i>Springer Protocols</i> , 2016 , 165-176	0.3	1	
81	Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues. <i>Journal of Biological Chemistry</i> , 2016 , 291, 9190-202	5.4	46	
80	Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. <i>Environmental Microbiology</i> , 2016 , 18, 3342-3354	5.2	14	
79	Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 9719-9732	5.7	18	
78	(Per)chlorate in Biology on Earth and Beyond. Annual Review of Microbiology, 2016, 70, 435-57	17.5	35	
77	Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms. <i>Environmental Science & Environmental Science & Environm</i>	10.3	36	
76	Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1. <i>MBio</i> , 2015 , 6, e00282-15	7.8	9	
75	Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2717-26	4.8	21	
74	Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich Peptide and methionine sulfoxide reductase. <i>MBio</i> , 2015 , 6, e00233-15	7.8	34	
73	Widespread occurrence of (per)chlorate in the Solar System. Earth and Planetary Science Letters,	5.3	34	

72	Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. <i>ISME Journal</i> , 2015 , 9, 1295-305	11.9	46
71	Acanthopleuribacterales 2015 , 1-1		
70	Acidobacteriia 2015 , 1-1		
69	Acidobacteriaceae fam. nov. 2015 , 1-1		
68	Acanthopleuribacteraceae 2015 , 1-1		
67	Holophagaceae 2015 , 1-1		
66	Acidobacterium 2015 , 1-1		1
65	Edaphobacter 2015, 1-3		
64	Terriglobus 2015 , 1-2		
63	Acanthopleuribacter 2015 , 1-2		
62	Holophaga 2015 , 1-2		
61	Acidobacteriales 2015 , 1-1		
60	Holophagales 2015 , 1-1		
59	Acidobacteria phyl. nov. 2015 , 1-5		1
58	Geobacter 2015 , 1-6		
57	Bacteria that Respire Oxyanions of Chlorine 2015 , 1-5		
56	Holophagae 2015 , 1-1		
55	Geothrix 2015 , 1-2		

(2012-2015)

54	The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer. <i>BMC Genomics</i> , 2015 , 16, 862	4.5	20
53	(Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor. <i>MBio</i> , 2015 , 6,	7.8	17
52	Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress. <i>Molecular Microbiology</i> , 2014 , 94, 107-25	4.1	23
51	Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria 2014 , 173-P1		3
50	Isotopic insights into microbial sulfur cycling in oil reservoirs. Frontiers in Microbiology, 2014 , 5, 480	5.7	20
49	Methane oxidation linked to chlorite dismutation. Frontiers in Microbiology, 2014, 5, 275	5.7	12
48	Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. <i>Frontiers in Microbiology</i> , 2014 , 5, 315	5.7	57
47	Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction. <i>Environmental Microbiology Reports</i> , 2014 , 6, 558-64	3.7	34
46	Transposon and deletion mutagenesis of genes involved in perchlorate reduction in Azospira suillum PS. <i>MBio</i> , 2013 , 5, e00769-13	7.8	22
45	Surfaceomics and surface-enhanced Raman spectroscopy of environmental microbes: matching cofactors with redox-active surface proteins. <i>Proteomics</i> , 2013 , 13, 2761-5	4.8	3
44	Physiological and genetic description of dissimilatory perchlorate reduction by the novel marine bacterium Arcobacter sp. strain CAB. <i>MBio</i> , 2013 , 4, e00217-13	7.8	29
43	Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. <i>Journal of Bacteriology</i> , 2013 , 195, 3260-8	3.5	107
42	Structure and evolution of chlorate reduction composite transposons. <i>MBio</i> , 2013 , 4,	7.8	49
41	Perchlorate on Mars: a chemical hazard and a resource for humans. <i>International Journal of Astrobiology</i> , 2013 , 12, 321-325	1.4	62
40	Bioelectrical redox cycling of anthraquinone-2,6-disulfonate coupled to perchlorate reduction. <i>Energy and Environmental Science</i> , 2012 , 5, 7970	35.4	15
39	Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 98, 19-30	5.5	27
38	Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification. <i>Frontiers in Microbiology</i> , 2012 , 3, 57	5.7	69
37	Complete genome sequence of the anaerobic perchlorate-reducing bacterium Azospira suillum strain PS. <i>Journal of Bacteriology</i> , 2012 , 194, 2767-8	3.5	35

36	Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1702-7	11.5	129
35	A bioassay for the detection of perchlorate in the ppb range. <i>Environmental Science & Environmental &</i>	10.3	14
34	Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 7401-4	4.8	38
33	Magnetospirillum bellicus sp. nov., a novel dissimilatory perchlorate-reducing alphaproteobacterium isolated from a bioelectrical reactor. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 4730-7	4.8	46
32	Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov.and Propionivibrio militaris, sp. nov. <i>Applied Microbiology and Biotechnology</i> , 2010 , 86, 335-43	5.7	44
31	Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. <i>Applied Microbiology and Biotechnology</i> , 2009 , 83, 555-65	5.7	67
30	Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors. <i>Applied Microbiology and Biotechnology</i> , 2009 , 84, 955-63	5.7	20
29	A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. <i>ISME Journal</i> , 2008 , 2, 1146-56	11.9	266
28	Review: Direct and indirect electrical stimulation of microbial metabolism. <i>Environmental Science & Environmental Science</i> & Environmental Science &	10.3	272
27	Electrochemical stimulation of microbial perchlorate reduction. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	190
26	The Biochemistry and Genetics of Microbial Perchlorate Reduction 2006 , 297-310		4
25	The Microbiology of Perchlorate Reduction and its Bioremediative Application 2006 , 279-295		15
24	Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. <i>Nature Reviews Microbiology</i> , 2006 , 4, 752-64	22.2	1079
23	Biological control of hog waste odor through stimulated microbial Fe(III) reduction. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 4728-35	4.8	44
22	Identification, characterization, and classification of genes encoding perchlorate reductase. <i>Journal of Bacteriology</i> , 2005 , 187, 5090-6	3.5	117
21	Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 8649-55	4.8	160
20	Metabolic primers for detection of (Per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5651-8	4.8	73
19	Microbial perchlorate reduction: rocket-fueled metabolism. <i>Nature Reviews Microbiology</i> , 2004 , 2, 569-8	3 0 2.2	397

18	Sequencing and transcriptional analysis of the chlorite dismutase gene of Dechloromonas agitata and its use as a metabolic probe. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4820-6	4.8	71
17	Universal immunoprobe for (per)chlorate-reducing bacteria. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 3108-13	4.8	54
16	Environmental factors that control microbial perchlorate reduction. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4425-30	4.8	140
15	Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 2445-52	4.8	162
14	Anaerobic benzene biodegradationa new era. <i>Research in Microbiology</i> , 2002 , 153, 621-8	4	113
13	Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. <i>Nature</i> , 2001 , 411, 1039-43	50.4	422
12	Biogenic magnetite formation through anaerobic biooxidation of Fe(II). <i>Applied and Environmental Microbiology</i> , 2001 , 67, 2844-8	4.8	198
11	Isolation and Characterization of Two Novel (Per)Chlorate-Reducing Bacteria from Swine Waste Lagoons 2000 , 271-283		32
10	Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 5234-41	4.8	386
9	Hydrocarbon Bioremediative Potential of (Per)Chlorate-Reducing Bacteria. <i>Bioremediation Journal</i> , 1999 , 3, 323-334	2.3	40
8	Humics as an electron donor for anaerobic respiration. <i>Environmental Microbiology</i> , 1999 , 1, 89-98	5.2	221
7	Reduction of (per)chlorate by a novel organism isolated from paper mill waste. <i>Environmental Microbiology</i> , 1999 , 1, 319-29	5.2	197
6	Localized Sulfate-Reducing Zones in a Coastal Plain Aquifer. <i>Ground Water</i> , 1999 , 37, 505-516	2.4	28
5	Anoxic bioremediation of hydrocarbons. <i>Nature</i> , 1998 , 396, 730	50.4	52
4	Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. <i>Archives of Microbiology</i> , 1997 , 168, 380-8	3	230
3	Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate-Reducing and Artificially Imposed Iron-Reducing Conditions. <i>Environmental Science & Environmental Science & Technology</i> , 1996 , 30, 2784-2789	10.3	134
2	Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. <i>Archives of Microbiology</i> , 1995 , 164, 406-413	3	140
1	Anaerobic Respiratory Iron(II) Oxidation157-171		1

JOHN D COATES