John D Coates

List of Publications by Citations

Source: https://exaly.com/author-pdf/3176623/john-d-coates-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

107
papers6,752
citations37
h-index82
g-index141
ext. papers8,102
ext. citations8
avg, IF5.77
L-index

#	Paper	IF	Citations
107	Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. <i>Nature Reviews Microbiology</i> , 2006 , 4, 752-64	22.2	1079
106	Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. <i>Nature</i> , 2001 , 411, 1039-43	50.4	422
105	Microbial perchlorate reduction: rocket-fueled metabolism. <i>Nature Reviews Microbiology</i> , 2004 , 2, 569-	80 _{2.2}	397
104	Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 5234-41	4.8	386
103	Review: Direct and indirect electrical stimulation of microbial metabolism. <i>Environmental Science</i> & amp; Technology, 2008, 42, 3921-31	10.3	272
102	A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. <i>ISME Journal</i> , 2008 , 2, 1146-56	11.9	266
101	Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. <i>Archives of Microbiology</i> , 1997 , 168, 380-8	3	230
100	Humics as an electron donor for anaerobic respiration. <i>Environmental Microbiology</i> , 1999 , 1, 89-98	5.2	221
99	Biogenic magnetite formation through anaerobic biooxidation of Fe(II). <i>Applied and Environmental Microbiology</i> , 2001 , 67, 2844-8	4.8	198
98	Reduction of (per)chlorate by a novel organism isolated from paper mill waste. <i>Environmental Microbiology</i> , 1999 , 1, 319-29	5.2	197
97	Electrochemical stimulation of microbial perchlorate reduction. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	190
96	Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 2445-52	4.8	162
95	Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 8649-55	4.8	160
94	Environmental factors that control microbial perchlorate reduction. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4425-30	4.8	140
93	Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. <i>Archives of Microbiology</i> , 1995 , 164, 406-413	3	140
92	Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate-Reducing and Artificially Imposed Iron-Reducing Conditions. <i>Environmental Science & Technology</i> , 1996 , 30, 2784-2789	10.3	134
91	Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1702-7	11.5	129

(2005-2005)

90	Identification, characterization, and classification of genes encoding perchlorate reductase. <i>Journal of Bacteriology</i> , 2005 , 187, 5090-6	3.5	117
89	Anaerobic benzene biodegradationa new era. <i>Research in Microbiology</i> , 2002 , 153, 621-8	4	113
88	Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. <i>Journal of Bacteriology</i> , 2013 , 195, 3260-8	3.5	107
87	Metabolic primers for detection of (Per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5651-8	4.8	73
86	Sequencing and transcriptional analysis of the chlorite dismutase gene of Dechloromonas agitata and its use as a metabolic probe. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4820-6	4.8	71
85	Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification. <i>Frontiers in Microbiology</i> , 2012 , 3, 57	5.7	69
84	Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. <i>Applied Microbiology and Biotechnology</i> , 2009 , 83, 555-65	5.7	67
83	Perchlorate on Mars: a chemical hazard and a resource for humans. <i>International Journal of Astrobiology</i> , 2013 , 12, 321-325	1.4	62
82	Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO fixation pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E92-E101	11.5	61
81	Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. <i>Frontiers in Microbiology</i> , 2014 , 5, 315	5.7	57
80	Universal immunoprobe for (per)chlorate-reducing bacteria. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 3108-13	4.8	54
79	Anoxic bioremediation of hydrocarbons. <i>Nature</i> , 1998 , 396, 730	50.4	52
78	Structure and evolution of chlorate reduction composite transposons. <i>MBio</i> , 2013 , 4,	7.8	49
77	Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. <i>ISME Journal</i> , 2015 , 9, 1295-305	11.9	46
76	Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues. <i>Journal of Biological Chemistry</i> , 2016 , 291, 9190-202	5.4	46
75	Magnetospirillum bellicus sp. nov., a novel dissimilatory perchlorate-reducing alphaproteobacterium isolated from a bioelectrical reactor. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 4730-7	4.8	46
74	Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov.and Propionivibrio militaris, sp. nov. <i>Applied Microbiology and Biotechnology</i> , 2010 , 86, 335-43	5.7	44
73	Biological control of hog waste odor through stimulated microbial Fe(III) reduction. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 4728-35	4.8	44

72	Hydrocarbon Bioremediative Potential of (Per)Chlorate-Reducing Bacteria. <i>Bioremediation Journal</i> , 1999 , 3, 323-334	2.3	40
71	Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 7401-4	4.8	38
70	Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms. <i>Environmental Science & Environmental Science & Environm</i>	10.3	36
69	Complete genome sequence of the anaerobic perchlorate-reducing bacterium Azospira suillum strain PS. <i>Journal of Bacteriology</i> , 2012 , 194, 2767-8	3.5	35
68	(Per)chlorate in Biology on Earth and Beyond. Annual Review of Microbiology, 2016, 70, 435-57	17.5	35
67	Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich Peptide and methionine sulfoxide reductase. <i>MBio</i> , 2015 , 6, e00233-15	7.8	34
66	Widespread occurrence of (per)chlorate in the Solar System. <i>Earth and Planetary Science Letters</i> , 2015 , 430, 470-476	5.3	34
65	Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction. <i>Environmental Microbiology Reports</i> , 2014 , 6, 558-64	3.7	34
64	Isolation and Characterization of Two Novel (Per)Chlorate-Reducing Bacteria from Swine Waste Lagoons 2000 , 271-283		32
63	Physiological and genetic description of dissimilatory perchlorate reduction by the novel marine bacterium Arcobacter sp. strain CAB. <i>MBio</i> , 2013 , 4, e00217-13	7.8	29
62	Localized Sulfate-Reducing Zones in a Coastal Plain Aquifer. <i>Ground Water</i> , 1999 , 37, 505-516	2.4	28
61	Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 98, 19-30	5.5	27
60	Reactive Transport Model of Sulfur Cycling as Impacted by Perchlorate and Nitrate Treatments. <i>Environmental Science & Environmental &</i>	10.3	25
59	Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. <i>ISME Journal</i> , 2018 , 12, 1568-1581	11.9	24
58	Mechanism of HS Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism PS. <i>MBio</i> , 2017 , 8,	7.8	23
57	Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress. <i>Molecular Microbiology</i> , 2014 , 94, 107-25	4.1	23
56	Transposon and deletion mutagenesis of genes involved in perchlorate reduction in Azospira suillum PS. <i>MBio</i> , 2013 , 5, e00769-13	7.8	22
55	Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2717-26	4.8	21

(2018-2015)

54	The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer. <i>BMC Genomics</i> , 2015 , 16, 862	4.5	20	
53	Isotopic insights into microbial sulfur cycling in oil reservoirs. <i>Frontiers in Microbiology</i> , 2014 , 5, 480	5.7	20	
52	Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors. <i>Applied Microbiology and Biotechnology</i> , 2009 , 84, 955-63	5.7	20	
51	Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 9719-9732	5.7	18	
50	(Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor. <i>MBio</i> , 2015 , 6,	7.8	17	
49	Biotechnological Applications of Microbial (Per)chlorate Reduction. <i>Microorganisms</i> , 2017 , 5,	4.9	16	
48	Bioelectrical redox cycling of anthraquinone-2,6-disulfonate coupled to perchlorate reduction. <i>Energy and Environmental Science</i> , 2012 , 5, 7970	35.4	15	
47	The Microbiology of Perchlorate Reduction and its Bioremediative Application 2006 , 279-295		15	
46	High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction. <i>Environmental Science & Environmental Science & </i>	10.3	14	
45	A bioassay for the detection of perchlorate in the ppb range. <i>Environmental Science & Environmental S</i>	10.3	14	
44	Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. <i>Microbiology (United Kingdom)</i> , 2019 , 165, 254-269	2.9	14	
43	Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. <i>Environmental Microbiology</i> , 2016 , 18, 3342-3354	5.2	14	
42	Methane oxidation linked to chlorite dismutation. Frontiers in Microbiology, 2014, 5, 275	5.7	12	
41	Comprehensive Analysis of Changes in Crude Oil Chemical Composition during Biosouring and Treatments. <i>Environmental Science & Environmental &</i>	10.3	10	
40	Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment. <i>Frontiers in Microbiology</i> , 2018 , 9, 1575	5.7	10	
39	Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1. <i>MBio</i> , 2015 , 6, e00282-15	7.8	9	
38	Adaptation of Desulfovibrio alaskensis G20 to perchlorate, a specific inhibitor of sulfate reduction. <i>Environmental Microbiology</i> , 2019 , 21, 1395-1406	5.2	8	
37	Dissimilatory Sulfate Reduction Under High Pressure by G20. Frontiers in Microbiology, 2018 , 9, 1465	5.7	7	

36	Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference. <i>Frontiers in Microbiology</i> , 2018 , 9, 376	5.7	6
35	Microbial metal resistance and metabolism across dynamic landscapes: high-throughput environmental microbiology. <i>F1000Research</i> , 2017 , 6, 1026	3.6	6
34	Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle. <i>ISME Journal</i> , 2020 , 14, 1194-1206	11.9	5
33	Mitigating Sulfidogenesis With Simultaneous Perchlorate and Nitrate Treatments. <i>Frontiers in Microbiology</i> , 2018 , 9, 2305	5.7	5
32	The Biochemistry and Genetics of Microbial Perchlorate Reduction 2006, 297-310		4
31	Anion transport as a target of adaption to perchlorate in sulfate-reducing communities. <i>ISME Journal</i> , 2020 , 14, 450-462	11.9	4
30	The diversity and evolution of microbial dissimilatory phosphite oxidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
29	Microbial Sulfate Reduction and Perchlorate Inhibition in a Novel Mesoscale Tank Experiment. <i>Energy & Energy &</i>	4.1	4
28	Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate. <i>Frontiers in Microbiology</i> , 2019 , 10, 654	5.7	3
27	Accentuate the Positive: Dissimilatory Iron Reduction by Gram-Positive Bacteria 2014 , 173-P1		3
26	Surfaceomics and surface-enhanced Raman spectroscopy of environmental microbes: matching cofactors with redox-active surface proteins. <i>Proteomics</i> , 2013 , 13, 2761-5	4.8	3
25	Tungstate Control of Microbial Sulfidogenesis and Souring of the Engineered Environment. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	2
24	Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world& oceans. <i>ISME Journal</i> , 2021 ,	11.9	2
23	Biofilm Feedbacks Alter Hydrological Characteristics of Fractured Rock Impacting Sulfidogenesis and Treatment. <i>Energy & Documents</i> , 2019, 33, 10476-10486	4.1	1
22	An uncharacterized clade in the DMSO reductase family of molybdenum oxidoreductases is a new type of chlorate reductase. <i>Environmental Microbiology Reports</i> , 2020 , 12, 534-539	3.7	1
21	Enrichment and Isolation of Chloroxyanion-Respiring Hydrocarbon Oxidizers. <i>Springer Protocols</i> , 2016 , 165-176	0.3	1
20	Acidobacterium 2015 , 1-1		1
19	Acidobacteria phyl. nov. 2015 , 1-5		1

18	Anaerobic Respiratory Iron(II) Oxidation157-171		1
17	Perchlorate and Its Application in the Oil and Gas Industry 2019 , 109-128		1
16	Isolation of a Dissimilatory Iodate-Reducing From a Freshwater Creek in the San Francisco Bay Area <i>Frontiers in Microbiology</i> , 2021 , 12, 804181	5.7	О
15	Acanthopleuribacterales 2015 , 1-1		
14	Acidobacteriia 2015 , 1-1		
13	Acidobacteriaceae fam. nov. 2015 , 1-1		
12	Acanthopleuribacteraceae 2015 , 1-1		
11	Holophagaceae 2015 , 1-1		
10	Edaphobacter 2015 , 1-3		
9	Terriglobus 2015 , 1-2		
8	Acanthopleuribacter 2015 , 1-2		
7	Holophaga 2015 , 1-2		
6	Acidobacteriales 2015 , 1-1		
5	Holophagales 2015 , 1-1		
4	Geobacter 2015 , 1-6		
3	Bacteria that Respire Oxyanions of Chlorine 2015 , 1-5		
2	Holophagae 2015 , 1-1		
1	Geothrix 2015 , 1-2		

JOHN D COATES