Ian K Blaby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176415/publications.pdf Version: 2024-02-01

IAN K RIARY

#	Article	IF	CITATIONS
1	Protocol for condition-dependent metabolite yield prediction using the TRIMER pipeline. STAR Protocols, 2022, 3, 101184.	1.2	2
2	Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Reports, 2022, 39, 110834.	6.4	20
3	Plant single-cell solutions for energy and the environment. Communications Biology, 2021, 4, 962.	4.4	23
4	TRIMER: Transcription Regulation Integrated with Metabolic Regulation. IScience, 2021, 24, 103218.	4.1	7
5	Building a custom high-throughput platform at the Joint Genome Institute for DNA construct design and assembly—present and future challenges. Synthetic Biology, 2020, 5, ysaa023.	2.2	2
6	Bacterial genome editing by coupling Cre-lox and CRISPR-Cas9 systems. PLoS ONE, 2020, 15, e0241867.	2.5	7
7	ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks. BMC Genomics, 2019, 20, 1003.	2.8	26
8	Gene Expression Analysis by Arylsulfatase Assays in the Green Alga Chlamydomonas reinhardtii. Methods in Molecular Biology, 2018, 1755, 149-161.	0.9	3
9	Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 2017, 22, 187-215.	4.6	69
10	Genomics and Functional Genomics in Chlamydomonas reinhardtii. Microbiology Monographs, 2017, , 1-26.	0.6	4
11	Deep Learning in Label-free Cell Classification. Scientific Reports, 2016, 6, 21471.	3.3	368
12	Exploiting algal NADPH oxidase for biophotovoltaic energy. Plant Biotechnology Journal, 2016, 14, 22-28.	8.3	37
13	Genomeâ€wide analysis on <i>Chlamydomonas reinhardtii</i> reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes. Plant Journal, 2015, 84, 974-988.	5.7	55
14	Activation of Autophagy by Metals in Chlamydomonas reinhardtii. Eukaryotic Cell, 2015, 14, 964-973.	3.4	29
15	High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation. Plant Cell, 2015, 27, 2743-69.	6.6	195
16	The Path to Triacylglyceride Obesity in the <i>sta6</i> Strain of Chlamydomonas reinhardtii. Eukaryotic Cell, 2014, 13, 591-613.	3.4	143
17	The Chlamydomonas genome project: a decade on. Trends in Plant Science, 2014, 19, 672-680.	8.8	145
18	Nitrogen-Sparing Mechanisms in <i>Chlamydomonas</i> Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism. Plant Cell. 2014. 26. 1410-1435.	6.6	314

Ian K Blaby

#	Article	IF	CITATIONS
19	Systems-Level Analysis of Nitrogen Starvation-Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant. Plant Cell, 2013, 25, 4305-4323.	6.6	176
20	Quinolinate Salvage and Insights for Targeting NAD Biosynthesis in Group A Streptococci. Journal of Bacteriology, 2013, 195, 726-732.	2.2	50
21	The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA. Rna, 2012, 18, 421-433.	3.5	36
22	Experimental Evolution of a Facultative Thermophile from a Mesophilic Ancestor. Applied and Environmental Microbiology, 2012, 78, 144-155.	3.1	65
23	Three Acyltransferases and Nitrogen-responsive Regulator Are Implicated in Nitrogen Starvation-induced Triacylglycerol Accumulation in Chlamydomonas. Journal of Biological Chemistry, 2012, 287, 15811-15825.	3.4	379
24	A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism. Functional and Integrative Genomics, 2011, 11, 467-478.	3.5	21
25	Pseudouridine formation in archaeal RNAs: The case of <i>Haloferax volcanii</i> . Rna, 2011, 17, 1367-1380.	3.5	40
26	A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10412-10417.	7.1	81
27	FolX and FolM Are Essential for Tetrahydromonapterin Synthesis in Escherichia coli and Pseudomonas aeruginosa. Journal of Bacteriology, 2010, 192, 475-482.	2.2	46
28	Genomics-driven Reconstruction of Acinetobacter NAD Metabolism. Journal of Biological Chemistry, 2010, 285, 39490-39499.	3.4	36
29	A Gateway platform for functional genomics in <i>Haloferax volcanii</i> : deletion of three tRNA modification genes. Archaea, 2009, 2, 211-219.	2.3	20
30	A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability. Plasmid, 2006, 56, 68-73.	1.4	21