Paul W Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176357/publications.pdf

Version: 2024-02-01

30 papers 1,112 citations

16 h-index 454834 30 g-index

32 all docs 32 docs citations

times ranked

32

1042 citing authors

#	Article	IF	Citations
1	Core stability exercises on and off a Swiss ball. Archives of Physical Medicine and Rehabilitation, 2005, 86, 242-249.	0.5	311
2	Evaluation of Functional and Neuromuscular Changes After Exercise Rehabilitation for Low Back Pain Using a Swiss Ball: A Pilot Study. Journal of Manipulative and Physiological Therapeutics, 2006, 29, 550-560.	0.4	82
3	Muscle Activation Changes After Exercise Rehabilitation for Chronic Low Back Pain. Archives of Physical Medicine and Rehabilitation, 2008, 89, 1305-1313.	0.5	71
4	Changes in muscle activity and perceived exertion during exercises performed on a swiss ball. Applied Physiology, Nutrition and Metabolism, 2006, 31, 376-383.	0.9	65
5	The Effect of Sacroiliac Joint Manipulation on Feed-Forward Activation Times of the Deep Abdominal Musculature. Journal of Manipulative and Physiological Therapeutics, 2006, 29, 196-202.	0.4	60
6	Delayed abdominal muscle onsets and self-report measures of pain and disability in chronic low back pain. Journal of Electromyography and Kinesiology, 2010, 20, 833-839.	0.7	51
7	The Definition and Application of Pilates Exercise to Treat People With Chronic Low Back Pain: A Delphi Survey of Australian Physical Therapists. Physical Therapy, 2014, 94, 792-805.	1.1	47
8	Changes in the Flexion Relaxation Response Following an Exercise Intervention. Spine, 2006, 31, E877-E883.	1.0	42
9	The Cervical Flexion-Relaxation Ratio. Spine, 2010, 35, 2103-2108.	1.0	40
10	Scheduling of training and recovery during the inâ€season weekly microâ€cycle: Insights from team sport practitioners. European Journal of Sport Science, 2019, 19, 1287-1296.	1.4	38
11	Extensibility of the Hamstrings Is Best Explained by Mechanical Components of Muscle Contraction, Not Behavioral Measures in Individuals With Chronic Low Back Pain. PM and R, 2009, 1, 709-718.	0.9	35
12	Self-Report Measures Best Explain Changes in Disability Compared With Physical Measures After Exercise Rehabilitation for Chronic Low Back Pain. Spine, 2008, 33, 326-338.	1.0	30
13	The Effect of Spinal Manipulation on the Efficacy of a Rehabilitation Protocol for Patients With Chronic Neck Pain: A Pilot Study. Journal of Manipulative and Physiological Therapeutics, 2010, 33, 168-177.	0.4	27
14	Impaired Trunk and Ankle Stability in Subjects with Functional Ankle Instability. Medicine and Science in Sports and Exercise, 2009, 41, 1549-1557.	0.2	24
15	The effect of metabolic alkalosis on central and peripheral mechanisms associated with exerciseâ€induced muscle fatigue in humans. Experimental Physiology, 2015, 100, 519-530.	0.9	23
16	The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise. Experimental Physiology, 2018, 103, 976-984.	0.9	19
17	The eccentric, concentric strength relationship of the hamstring muscles in chronic low back pain. Journal of Electromyography and Kinesiology, 2010, 20, 39-45.	0.7	18

#	Article	IF	CITATIONS
19	The Relationship Between Active and Neural Measures in Patients With Nonspecific Low Back Pain. Spine, 2006, 31, E518-E524.	1.0	17
20	Trained females exhibit less fatigability than trained males after a heavy knee extensor resistance exercise session. European Journal of Applied Physiology, 2019, 119, 181-190.	1.2	16
21	Changes in Fatigue Are the Same for Trained Men and Women after Resistance Exercise. Medicine and Science in Sports and Exercise, 2020, 52, 196-204.	0.2	15
22	Divergent muscle functional and architectural responses to two successive high intensity resistance exercise sessions in competitive weightlifters and resistance trained adults. European Journal of Applied Physiology, 2012, 112, 3629-3639.	1.2	14
23	The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise. Experimental Physiology, 2016, 101, 1383-1391.	0.9	12
24	The effect of <scp>IPC</scp> on central and peripheral fatiguing mechanisms in humans following maximal single limb isokinetic exercise. Physiological Reports, 2019, 7, e14063.	0.7	10
25	Effect of ischemic preconditioning and changing inspired O ₂ fractions on neuromuscular function during intense exercise. Journal of Applied Physiology, 2019, 127, 1688-1697.	1.2	8
26	Changes in the quadriceps spinal reflex pathway after repeated sprint cycling are not influenced by ischemic preconditioning. European Journal of Applied Physiology, 2020, 120, 1189-1202.	1.2	6
27	The Role of Fear-Avoidance Beliefs on Low Back Pain-Related Disability in a Developing Socioeconomic and Conservative Culture: A Cross-Sectional Study of a Pakistani Population Journal of Pain Research, 2020, Volume 13, 2377-2387.	0.8	4
28	Fatigue, pain, and the recovery of neuromuscular function after consecutive days of full-body resistance exercise in trained men. European Journal of Applied Physiology, 2021, 121, 3103-3116.	1.2	4
29	Declines in muscle contractility and activation during isometric contractions of the knee extensors vary with contraction intensity and exercise volume. Experimental Physiology, 2021, 106, 2096-2106.	0.9	3
30	Fatigability of the knee extensors following high- and low-load resistance exercise sessions in trained men. European Journal of Applied Physiology, 2022, 122, 245-254.	1.2	2