
Evan Elliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbes, metabolites and (synaptic) malleability, oh my! <scp>T</scp> he effect of the microbiome on synaptic plasticity. Biological Reviews, 2022, 97, 582-599.	10.4	13
2	CTCF in parvalbumin-expressing neurons regulates motor, anxiety and social behavior and neuronal identity. Molecular Brain, 2022, 15, 30.	2.6	3
3	Modified Snake α-Neurotoxin Averts β-Amyloid Binding to α7 Nicotinic Acetylcholine Receptor and Reverses Cognitive Deficits in Alzheimer's Disease Mice. Molecular Neurobiology, 2021, 58, 2322-2341.	4.0	6
4	The Mechanisms of CHD8 in Neurodevelopment and Autism Spectrum Disorders. Genes, 2021, 12, 1133.	2.4	22
5	Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring. Translational Psychiatry, 2020, 10, 412.	4.8	13
6	The National Autism Database of Israel: a Resource for Studying Autism Risk Factors, Biomarkers, Outcome Measures, and Treatment Efficacy. Journal of Molecular Neuroscience, 2020, 70, 1303-1312.	2.3	22
7	The microbiota and the hypothalamus-pituitary-adrenocortical (HPA) axis, implications for anxiety and stress disorders. Current Opinion in Neurobiology, 2020, 62, 76-82.	4.2	112
8	Gene network analysis reveals a role for striatal glutamatergic receptors in dysregulated risk-assessment behavior of autism mouse models. Translational Psychiatry, 2019, 9, 257.	4.8	25
9	Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons. Nature Neuroscience, 2019, 22, 1913-1924.	14.8	71
10	Role of Tryptophan in Microbiota-Induced Depressive-Like Behavior: Evidence From Tryptophan Depletion Study. Frontiers in Behavioral Neuroscience, 2019, 13, 123.	2.0	62
11	Social-Stress-Responsive Microbiota Induces Stimulation of Self-Reactive Effector T Helper Cells. MSystems, 2019, 4, .	3.8	39
12	Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Translational Psychiatry, 2019, 9, 133.	4.8	159
13	Differential contribution of cis and trans gene transcription regulatory mechanisms in amygdala and prefrontal cortex and modulation by social stress. Scientific Reports, 2018, 8, 6339.	3.3	10
14	The emerging roles for the chromatin structure regulators CTCF and cohesin in neurodevelopment and behavior. Cellular and Molecular Life Sciences, 2018, 75, 1205-1214.	5.4	23
15	L-Norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer's Disease. Neurotherapeutics, 2018, 15, 1036-1054.	4.4	61
16	Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain, Behavior, and Immunity, 2018, 73, 310-319.	4.1	130
17	Intracerebroventricular administration of L-arginine improves spatial memory acquisition in triple transgenic mice via reduction of oxidative stress and apoptosis. Translational Neuroscience, 2018, 9, 43-53.	1.4	22
18	Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. International Journal of Molecular Sciences, 2017, 18, 828.	4.1	25

Evan Elliott

#	Article	IF	CITATIONS
19	The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders. Frontiers in Neuroscience, 2016, 10, 329.	2.8	94
20	Neuronal CTCF Is Necessary for Basal and Experience-Dependent Gene Regulation, Memory Formation, and Genomic Structure of BDNF and Arc. Cell Reports, 2016, 17, 2418-2430.	6.4	78
21	Ucn3 and CRF-R2 in the medial amygdala regulate complex social dynamics. Nature Neuroscience, 2016, 19, 1489-1496.	14.8	91
22	Dnmt3a in the Medial Prefrontal Cortex Regulates Anxiety-Like Behavior in Adult Mice. Journal of Neuroscience, 2016, 36, 730-740.	3.6	59
23	Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology, 2016, 102, 136-145.	4.1	182
24	Chronic Stress Induces Sex-Specific Alterations in Methylation and Expression of Corticotropin-Releasing Factor Gene in the Rat. PLoS ONE, 2011, 6, e28128.	2.5	135
25	E3 Ligase STUB1/CHIP Regulates NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Accumulation in Aged Brain, a Process Impaired in Certain Alzheimer Disease Patients. Journal of Biological Chemistry, 2011, 286, 8839-8845.	3.4	57
26	Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nature Neuroscience, 2010, 13, 1351-1353.	14.8	401
27	Dcp1a phosphorylation along neuronal development and stress. FEBS Letters, 2009, 583, 197-201.	2.8	15
28	BAGâ€1 is preferentially expressed in neuronal precursor cells of the adult mouse brain and regulates their proliferation in vitro. FEBS Letters, 2009, 583, 229-234.	2.8	5
29	BAGâ€1M is upâ€regulated in hippocampus of Alzheimer's disease patients and associates with tau and APP proteins. Journal of Neurochemistry, 2009, 109, 1168-1178.	3.9	29
30	BAG-1 Associates with Hsc70·Tau Complex and Regulates the Proteasomal Degradation of Tau Protein. Journal of Biological Chemistry, 2007, 282, 37276-37284.	3.4	93
31	The Role of Neurotrophins and Insulin on Tau Pathology in Alzheimer's Disease. Reviews in the Neurosciences, 2006, 17, 635-42.	2.9	17
32	Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a Pl-3Kinase signalling mechanism. European Journal of Neuroscience, 2005, 22, 1081-1089.	2.6	115
33	The insulin-like growth factor mRNA binding-protein IMP-1 and the Ras-regulatory protein G3BP associate with tau mRNA and HuD protein in differentiated P19 neuronal cells. Journal of Neurochemistry, 2004, 89, 613-626.	3.9	134