Manuel Curto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3176007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of a SSRâ€GBS marker system on investigation of European Hedgehog species and their hybrid zone dynamics. Ecology and Evolution, 2019, 9, 2814-2832.	0.8	43
2	Application of microsatellite genotyping by sequencing (SSR-GBS) to measure genetic diversity of the East African Oreochromis niloticus. Conservation Genetics, 2019, 20, 357-372.	0.8	42
3	Metabarcoding Analyses of Gut Microbiota of Nile Tilapia (Oreochromis niloticus) from Lake Awassa and Lake Chamo, Ethiopia. Microorganisms, 2020, 8, 1040.	1.6	37
4	Molecular phylogenetics of Micromeria (Lamiaceae) in the Canary Islands, diversification and inter-island colonization patterns inferred from nuclear genes. Molecular Phylogenetics and Evolution, 2015, 89, 160-170.	1.2	31
5	Molecular genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus, L. 1758) in East African natural and stocked populations. BMC Evolutionary Biology, 2020, 20, 16.	3.2	31
6	Development of phylogenetic markers from single-copy nuclear genes for multi locus, species level analyses in the mint family (Lamiaceae). Molecular Phylogenetics and Evolution, 2012, 63, 758-767.	1.2	29
7	Pollen availability for the Horned mason bee (<i>Osmia cornuta</i>) in regions of different land use and landscape structures. Ecological Entomology, 2020, 45, 525-537.	1.1	25
8	Genetic structure of <i>Micromeria</i> (Lamiaceae) in Tenerife, the imprint of geological history and hybridization on withinâ€island diversification. Ecology and Evolution, 2016, 6, 3443-3460.	0.8	21
9	Genetic diversity and differentiation patterns in Micromeria from the Canary Islands are congruent with multiple colonization dynamics and the establishment of species syngameons. BMC Evolutionary Biology, 2017, 17, 198.	3.2	20
10	The Impact of Sampling Season and Catching Site (Wild and Aquaculture) on Gut Microbiota Composition and Diversity of Nile Tilapia (Oreochromis niloticus). Biology, 2021, 10, 180.	1.3	20
11	Evaluation of microsatellites of Catha edulis (qat; Celastraceae) identified using pyrosequencing. Biochemical Systematics and Ecology, 2013, 49, 1-9.	0.6	17
12	Analysis of microsatellite loci in tree of heaven (Ailanthus altissima (Mill.) Swingle) using SSR-GBS. Tree Genetics and Genomes, 2018, 14, 1.	0.6	17
13	Anthropogenic impacts on the contextual morphological diversification and adaptation of Nile tilapia (Oreochromis niloticus, L. 1758) in East Africa. Environmental Biology of Fishes, 2018, 101, 363-381.	0.4	16
14	The gut bacterial microbiome of Nile tilapia (Oreochromis niloticus) from lakes across an altitudinal gradient. BMC Microbiology, 2022, 22, 87.	1.3	16
15	Using a new RAD-sequencing approach to study the evolution of Micromeria in the Canary islands. Molecular Phylogenetics and Evolution, 2018, 119, 160-169.	1.2	15
16	Evidence for multiple introductions of an invasive wild bee species currently under rapid range expansion in Europe. Bmc Ecology and Evolution, 2021, 21, 17.	0.7	15
17	The influence of geological history on diversification in insular species: genetic and morphological patterns of <i>Micromeria</i> Benth. (Lamiaceae) in Tenerife (Canary archipelago). Journal of Biogeography, 2014, 41, 1871-1882.	1.4	12
18	Illumina midi-barcodes: quality proof and applications. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2019, 30, 490-499.	0.7	10

MANUEL CURTO

#	Article	IF	CITATIONS
19	Population bottlenecks have shaped the genetic variation of Ailanthus altissima (Mill.) Swingle in an area of early introduction. Forestry, 2020, 93, 495-504.	1.2	10
20	A new amplicon based approach of whole mitogenome sequencing for phylogenetic and phylogeographic analysis: An example of East African white-eyes (Aves, Zosteropidae). Molecular Phylogenetics and Evolution, 2016, 102, 74-85.	1.2	9
21	Phylogeography of the wild and cultivated stimulant plant qat (Catha edulis , Celastraceae) in areas of historical cultivation. American Journal of Botany, 2017, 104, 538-549.	0.8	9
22	Application of microsatellite genotyping by amplicon sequencing for delimitation of African tilapiine species relevant for aquaculture. Aquaculture, 2021, 537, 736501.	1.7	8
23	Genetic characterization of fragmented populations of Cinchona officinalis L. (Rubiaceae), a threatened tree of the northern Andean cloud forests. Tree Genetics and Genomes, 2019, 15, 1.	0.6	7
24	Identifying geographically differentiated features of Ethopian Nile tilapia (Oreochromis niloticus) morphology with machine learning. PLoS ONE, 2021, 16, e0249593.	1.1	6
25	Genetic diversity of Nile tilapia (Oreochromis niloticus) populations in Ethiopia: insights from nuclear DNA microsatellites and implications for conservation. Bmc Ecology and Evolution, 2021, 21, 113.	0.7	6
26	Isoflavone synthase (IFS) gene phylogeny in Trifolium species associated with plant isoflavone contents. Plant Systematics and Evolution, 2013, 299, 357-367.	0.3	5
27	Evaluating the Impact of Wildlife Shelter Management on the Genetic Diversity of Erinaceus europaeus and E. roumanicus in Their Contact Zone. Animals, 2020, 10, 1452.	1.0	5
28	Comparative Transcriptome Analysis of Two Root-Feeding Grape Phylloxera (D. vitifoliae) Lineages Feeding on a Rootstock and V. vinifera. Insects, 2020, 11, 691.	1.0	5
29	Influence of past agricultural fragmentation to the genetic structure of Juniperus oxycedrus in a Mediterranean landscape. Tree Genetics and Genomes, 2015, 11, 1.	0.6	4
30	New Microsatellite Markers for Two Sympatric Tinamou Species, the Ornate Tinamou (<i>Nothoprocta) Tj ETQ</i>	q0 0 0 rgB1	Oyerlock 10
31	Knowledge Gaps in Taxonomy, Ecology, Population Distribution Drivers and Genetic Diversity of African Sandalwood (Osyris lanceolata Hochst. & Steud.): A Scoping Review for Conservation. Plants, 2021, 10, 1780.	1.6	4
32	Development and characterization of 16 microsatellite markers for Micromeria (Lamiaceae) from Tenerife (Canary Islands, Spain) using 454 sequencing. Conservation Genetics Resources, 2015, 7, 743-749.	0.4	3
33	Fifteen Microsatellite Markers for Herbertia zebrina (Iridaceae): An Endangered Species from South American Grasslands. Applications in Plant Sciences, 2017, 5, 1700035.	0.8	2
34	Investigating Shape Variation Using Generalized Procrustes Analysis and Machine Learning. Applied Sciences (Switzerland), 2022, 12, 3158.	1.3	2
35	Four new mitochondrial genomes of the genus zosterops (aves: passeriformes: zosteropidae) from East Africa with a phylogenetic evaluation of the group. Mitochondrial DNA Part B: Resources, 2016, 1, 544-548.	0.2	1
36	Clonal Diversity, Cultivar Traits, Geographic Dispersal, and the Ethnotaxonomy of Cultivated Qat (Catha edulis, Celastraceae). Economic Botany. 2020. 74. 273-291.	0.8	0

#	Article	IF	CITATIONS
37	Development and characterization of microsatellite markers for two subspecies of Handroanthus chrysanthus. Rodriguesia, 0, 72, .	0.9	0