
Vasily Titov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3175968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Addressing the meteotsunami risk in the united states. Natural Hazards, 2021, 106, 1467-1487.	1.6	10
2	Tsunami hazard and the new blue economy. , 2021, , 293-304.		0
3	Meteotsunami model forecast: can coastal hazard be quantified in real time?. Natural Hazards, 2021, 106, 1545-1561.	1.6	10
4	Hard Lessons of the 2018 Indonesian Tsunamis. Pure and Applied Geophysics, 2021, 178, 1121-1133.	0.8	8
5	The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island. Pageoph Topical Volumes, 2019, , 9-26.	0.2	0
6	The Role of Near-Shore Bathymetry During Tsunami Inundation in a Reef Island Setting: A Case Study of Tutuila Island. Pure and Applied Geophysics, 2018, 175, 1239-1256.	0.8	12
7	Evaluating the Effectiveness of DART® Buoy Networks Based on Forecast Accuracy. Pure and Applied Geophysics, 2018, 175, 1445-1471.	0.8	5
8	The 2004 Sumatra tsunami in the Southeastern Pacific Ocean: New Global Insight from Observations and Modeling. Journal of Geophysical Research: Oceans, 2017, 122, 7992-8019.	1.0	22
9	Real-Time Assessment of the 16 September 2015 Chile Tsunami and Implications for Near-Field Forecast. , 2017, , 267-285.		1
10	Consistent Estimates of Tsunami Energy Show Promise for Improved Early Warning. Pure and Applied Geophysics, 2016, 173, 3863-3880.	0.8	26
11	Development of MOST for Real-Time Tsunami Forecasting. Journal of Waterway, Port, Coastal and Ocean Engineering, 2016, 142, .	0.5	58
12	Real-Time Assessment of the 16 September 2015 Chile Tsunami and Implications for Near-Field Forecast. Pure and Applied Geophysics, 2016, 173, 369-387.	0.8	41
13	Tsunamis: bridging science, engineering and society. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140369.	1.6	47
14	Evolution of tsunami warning systems and products. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140371.	1.6	106
15	Source Models and Near-Field Impact of the 1 April 2007 Solomon Islands Tsunami. Pure and Applied Geophysics, 2015, 172, 657-682.	0.8	5
16	Detiding DART® Buoy Data for Real-Time Extraction of Source Coefficients for Operational Tsunami Forecasting. Pure and Applied Geophysics, 2015, 172, 1653-1678.	0.8	14
17	Tsunami Simulation Using Sources Inferred from Various Measurement Data: Implications for the Model Forecast. Pure and Applied Geophysics, 2015, 172, 773-789.	0.8	4
18	Evaluation of the Relationship Between Coral Damage and Tsunami Dynamics; Case Study: 2009 Samoa Tsunami. Pure and Applied Geophysics, 2015, 172, 3557-3572.	0.8	7

#	Article	IF	CITATIONS
19	Impact of Near-Field, Deep-Ocean Tsunami Observations on Forecasting the 7 December 2012 Japanese Tsunami. Pure and Applied Geophysics, 2014, 171, 3483-3491.	0.8	18
20	Waves and Currents in Hawaiian Waters Induced by the Dispersive 2011 Tohoku Tsunami. Pure and Applied Geophysics, 2014, 171, 3365-3384.	0.8	11
21	Tsunami Forecast by Joint Inversion of Real-Time Tsunami Waveforms and Seismic or GPS Data: Application to the Tohoku 2011 Tsunami. Pure and Applied Geophysics, 2014, 171, 3281-3305.	0.8	40
22	An assessment of the diversity in scenario-based tsunami forecasts for the Indian Ocean. Continental Shelf Research, 2014, 79, 36-45.	0.9	22
23	Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast. Pure and Applied Geophysics, 2013, 170, 1309-1331.	0.8	103
24	Focusing of long waves with finite crest over constant depth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130015.	1.0	26
25	Could satellite altimetry have improved early detection and warning of the 2011 Tohoku tsunami?. Geophysical Research Letters, 2012, 39, .	1.5	7
26	Dispersive modeling of the 2009 Samoa tsunami. Geophysical Research Letters, 2012, 39, .	1.5	30
27	Direct energy estimation of the 2011 Japan tsunami using deepâ€ocean pressure measurements. Journal of Geophysical Research, 2012, 117, .	3.3	103
28	March 11, 2011 Tohoku-Japan tsunami. , 2012, , .		0
29	Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	34
30	Near-field hazard assessment of March 11, 2011 Japan Tsunami sources inferred from different methods. , 2011, , .		2
31	A nested-grid Boussinesq-type approach to modelling dispersive propagation and runup of landslide-generated tsunamis. Natural Hazards and Earth System Sciences, 2011, 11, 2677-2697.	1.5	41
32	Signal-to-noise ratio and the isolation of the 11 March 2011 Tohoku tsunami in deep-ocean tsunameter records. , 2011, , .		2
33	Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations. Earth-Science Reviews, 2011, 107, 66-75.	4.0	64
34	Extraction of tsunami source coefficients via inversion of DART \$\$^{circledR}\$\$ buoy data. Natural Hazards, 2011, 58, 567-590.	1.6	70
35	Field Survey of the March 28, 2005 Nias-Simeulue Earthquake and Tsunami. Pure and Applied Geophysics, 2011, 168, 1075-1088.	0.8	29
36	The July 15, 2009 Fiordland, New Zealand Tsunami: Real-Time Assessment. Pure and Applied Geophysics, 2011, 168, 1963-1972.	0.8	14

#	Article	IF	CITATIONS
37	A New Tool for Inundation Modeling: Community Modeling Interface for Tsunamis (ComMIT). Pure and Applied Geophysics, 2011, 168, 2121-2131.	0.8	70
38	Detection of the 2010 Chilean tsunami using satellite altimetry. Natural Hazards and Earth System Sciences, 2011, 11, 2391-2406.	1.5	5
39	March 11, 2011 Tohoku-Japan tsunami: Lessons from forecast assessment. , 2011, , .		0
40	Field Survey of the Samoa Tsunami of 29 September 2009. Seismological Research Letters, 2010, 81, 577-591.	0.8	101
41	Tsunami Resilient Communities. , 2010, , .		9
42	A Case Study on Landslide-Generated Tsunami and Its Impact on the U.S. Atlantic Coast. , 2010, , .		0
43	The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: post-tsunami field survey and numerical modelling. Geophysical Journal International, 2009, 178, 180-194.	1.0	54
44	Development, testing, and applications of siteâ€specific tsunami inundation models for realâ€ŧime forecasting. Journal of Geophysical Research, 2009, 114, .	3.3	115
45	Probabilistic tsunami hazard assessment at Seaside, Oregon, for near―and farâ€field seismic sources. Journal of Geophysical Research, 2009, 114, .	3.3	211
46	Integration of Tsunami Analysis Tools into a GIS Workspace – Research, Modeling, and Hazard Mitigation efforts Within NOAA's Center for Tsunami Research. , 2009, , 273-294.		1
47	High-Performance Tsunami Wave Propagation Modeling. Lecture Notes in Computer Science, 2009, , 423-434.	1.0	3
48	Validation and Verification of Tsunami Numerical Models. Pure and Applied Geophysics, 2008, 165, 2197-2228.	0.8	219
49	A Comparison Study of Two Numerical Tsunami Forecasting Systems. Pure and Applied Geophysics, 2008, 165, 1991-2001.	0.8	31
50	Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. Geophysical Research Letters, 2008, 35, .	1.5	115
51	Combining constraints from tsunami modeling and sedimentology to untangle the 1969 Ozernoi and 1971 Kamchatskii tsunamis. Geophysical Research Letters, 2008, 35, .	1.5	32
52	Tsunami forecast analysis for the May 2006 Tonga tsunami. Journal of Geophysical Research, 2008, 113, .	3.3	47
53	EVALUATING WAVE PROPACATION AND INUNDATION CHARACTERISTICS OF THE MOST TSUNAMI MODEL OVER A COMPLEX 3D BEACH. Series on Quality, Reliability and Engineering Statistics, 2008, , 261-267.	0.2	2
54	Locally generated tsunamis recorded on the coast of British Columbia. Atmosphere - Ocean, 2008, 46, 343-360.	0.6	14

#	Article	IF	CITATIONS
55	Validation and Verification of Tsunami Numerical Models. , 2008, , 2197-2228.		14
56	A Comparison Study of Two Numerical Tsunami Forecasting Systems. , 2008, , 1991-2001.		1
57	Effects of Tides on Maximum Tsunami Wave Heights: Probability Distributions*. Journal of Atmospheric and Oceanic Technology, 2007, 24, 117-123.	0.5	28
58	Implications of the 26 December 2004 Sumatra-Andaman Earthquake on Tsunami Forecast and Assessment Models for Great Subduction-Zone Earthquakes. Bulletin of the Seismological Society of America, 2007, 97, S249-S270.	1.1	63
59	Sensitivity Analysis of Source Parameters for Earthquake-Generated Distant Tsunamis. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 429-441.	0.5	26
60	Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters, 2007, 34, .	1.5	120
61	Numerical Simulations of Tsunami Waves and Currents for Southern Vancouver Island from a Cascadia Megathrust Earthquake. Pure and Applied Geophysics, 2007, 164, 465-492.	0.8	33
62	MTSU : Recovering Seismic Moments from Tsunameter Records. Pure and Applied Geophysics, 2007, 164, 355-378.	0.8	14
63	MODELING FAR-FIELD TSUNAMIS FOR CALIFORNIA PORTS AND HARBORS. , 2007, , .		0
64	INUNDATION DURING THE 26 DECEMBER 2004 TSUNAMI. , 2007, , .		0
65	Numerical Simulations of Tsunami Waves and Currents for Southern Vancouver Island from a Cascadia Megathrust Earthquake. , 2007, , 465-492.		0
66	M TSU : Recovering Seismic Moments from Tsunameter Records. , 2007, , 355-378.		0
67	Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth, Planets and Space, 2006, 58, 185-193.	0.9	44
68	Improving Tsunami Forecast Skill Using Deep Ocean Observations. Marine Technology Society Journal, 2006, 40, 86-89.	0.3	8
69	Tsunami: WAVE of CHANGE. Scientific American, 2006, 294, 56-63.	1.0	72
70	Sumatra tsunami: lessons from modeling. Surveys in Geophysics, 2006, 27, 679-705.	2.1	31
71	Northwest Sumatra and Offshore Islands Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 105-135.	1.6	79
72	Smong: How an Oral History Saved Thousands on Indonesia's Simeulue Island during the December 2004 and March 2005 Tsunamis. Earthquake Spectra, 2006, 22, 661-669.	1.6	136

#	Article	IF	CITATIONS
73	Tsunami: scientific frontiers, mitigation, forecasting and policy implications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1989-2007.	1.6	74
74	Real-Time Tsunami Forecasting: Challenges and Solutions. Natural Hazards, 2005, 35, 35-41.	1.6	269
75	Progress in NTHMP Hazard Assessment. Natural Hazards, 2005, 35, 89-110.	1.6	27
76	Satellite Altimeters Measure Tsunami—Early Model Estimates Confirmed. Oceanography, 2005, 18, 11-13.	0.5	58
77	Real-Time Tsunami Forecasting: Challenges and Solutions. , 2005, , 41-58.		44
78	The Global Reach of the 26 December 2004 Sumatra Tsunami. Science, 2005, 309, 2045-2048.	6.0	388
79	Progress in NTHMP Hazard Assessment. , 2005, , 89-110.		3
80	The Harmonic Constant Datum Method: Options for Overcoming Datum Discontinuities at Mixed–Diurnal Tidal Transitions*. Journal of Atmospheric and Oceanic Technology, 2004, 21, 95-104.	0.5	15
81	Tsunami Scattering and Earthquake Faults in the Deep Pacific Ocean. Oceanography, 2004, 17, 38-46.	0.5	29
82	Tsunami. Earthquake Spectra, 2003, 19, 115-144.	1.6	10
83	Short-Term Inundation Forecasting for Tsunamis. , 2003, , 277-284.		5
84	Field Survey of the Camana, Peru Tsunami of 23 June 2001. Seismological Research Letters, 2002, 73, 907-920.	0.8	29
85	Tsunami scattering provinces in the Pacific Ocean. Geophysical Research Letters, 2001, 28, 335-337.	1.5	36
86	Numerical Study of the Source of the July 17, 1998 PNG Tsunami. Advances in Natural and Technological Hazards Research, 2001, , 197-207.	1.1	11
87	Offshore Forecasting of Alaskan Tsunamis in Hawaii. Advances in Natural and Technological Hazards Research, 2001, , 75-90.	1.1	17
88	Forecasting the Heights of Later Waves in Pacific-Wide Tsunamis. Natural Hazards, 2000, 22, 71-89.	1.6	20
89	Geologic Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996. Pure and Applied Geophysics, 1999, 154, 513-540.	0.8	64
90	Geologie Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996. , 1999, , 513-540.		1

#	Article	IF	CITATIONS
91	Numerical Modeling of Tidal Wave Runup. Journal of Waterway, Port, Coastal and Ocean Engineering, 1998, 124, 157-171.	0.5	396
92	Field survey of Mexican tsunami produces new data, unusual photos. Eos, 1997, 78, 85.	0.1	44
93	Extreme inundation flows during the Hokkaido-Nansei-Oki Tsunami. Geophysical Research Letters, 1997, 24, 1315-1318.	1.5	139
94	The 1994 Shikotan earthquake tsunamis. Pure and Applied Geophysics, 1995, 144, 855-874.	0.8	42
95	Field survey of the 1994 Mindoro Island, Philippines tsunami. Pure and Applied Geophysics, 1995, 144, 875-890.	0.8	45
96	Modeling of Breaking and Nonbreaking Long-Wave Evolution and Runup Using VTCS-2. Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121, 308-316.	0.5	204
97	The 1994 Shikotan Earthquake Tsunamis. , 1995, , 855-874.		15