Insoo Jun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/317567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinguishing the Origin of Asteroid (16) Psyche. Space Science Reviews, 2022, 218, 17.	8.1	13
2	Maximum Energies of Trapped Particles Around Magnetized Planets and Small Bodies. Geophysical Research Letters, 2022, 49, .	4.0	3
3	Jupiter high-energy/high-latitude electron environment from Juno's JEDI and UVS science instrument background noise. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1002, 165244.	1.6	2
4	First Adiabatic Invariants and Phase Space Densities for the Jovian Electron and Proton Radiation Belts—Galileo and GIRE3 Estimates. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028593.	2.4	7
5	A Study on the Performance of a Silicon Photodiode Sensor for a Particle Dosimeter and Spectrometer. Sensors, 2021, 21, 8029.	3.8	2
6	Assessment of water content in martian subsurface along the traverse of the Curiosity rover based on passive measurements of the DAN instrument. Icarus, 2020, 346, 113818.	2.5	7
7	Mars neutron radiation environment from HEND/Odyssey and DAN/MSL observations. Planetary and Space Science, 2020, 184, 104866.	1.7	9
8	Monte Carlo Evaluation of the Europa Clipper TID Margin Based on the Variability of the Jovian Radiation Environment With Application for Mission Design. Space Weather, 2020, 18, e2019SW002340.	3.7	2
9	Intercomparison of Ionizing Doses From Space Shielding Analyses Using MCNP, Geant4, FASTRAD, and NOVICE. IEEE Transactions on Nuclear Science, 2020, 67, 1629-1636.	2.0	2
10	Updating the Jovian Electron Plasma Environment. IEEE Transactions on Plasma Science, 2019, 47, 3915-3922.	1.3	9
11	Space Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models. Space Weather, 2019, 17, 1384-1403.	3.7	32
12	Trapped Particle Environments of the Outer Planets. IEEE Transactions on Plasma Science, 2019, 47, 3923-3930.	1.3	11
13	Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data and results from sols 753 to 1292: Pahrump Hills to Naukluft Plateau. Icarus, 2019, 330, 75-90.	2.5	4
14	Using the Galileo Solid-State Imaging Instrument as a Sensor of Jovian Energetic Electrons. IEEE Transactions on Nuclear Science, 2019, 66, 255-261.	2.0	6
15	Approach for Defining Internal Electrostatic Discharge Design Environment of a Jovian Mission. , 2019, , .		3
16	Solar particle event storm shelter requirements for missions beyond low Earth orbit. Life Sciences in Space Research, 2018, 17, 32-39.	2.3	42
17	Results from the dynamic albedo of neutrons (DAN) passive mode experiment: Yellowknife Bay to Amargosa Valley (Sols 201–753). Icarus, 2018, 299, 513-537.	2.5	7
18	Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 892, 70-83.	1.6	0

Insoo Jun

#	Article	IF	CITATIONS
19	Ground tests with prototype of CeBr 3 active gamma ray spectrometer proposed for future venus surface missions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 848, 9-18.	1.6	5
20	Diagenetic silica enrichment and lateâ€stage groundwater activity in Gale crater, Mars. Geophysical Research Letters, 2017, 44, 4716-4724.	4.0	87
21	Empirical radiation belt models: Comparison with in situ data and implications for environment definition. Space Weather, 2017, 15, 1165-1176.	3.7	8
22	The ADRON-RM Instrument Onboard the ExoMars Rover. Astrobiology, 2017, 17, 585-594.	3.0	17
23	The Europa Charging Environment. IEEE Transactions on Plasma Science, 2017, 45, 2040-2047.	1.3	3
24	The Latest Jovian-Trapped Proton and Heavy Ion Models. IEEE Transactions on Nuclear Science, 2017, 64, 2802-2813.	2.0	14
25	Implementation of gamma-ray instrumentation for solid solar system bodies using neutron activation method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 822, 112-124.	1.6	9
26	An empirical model of the highâ€energy electron environment at Jupiter. Journal of Geophysical Research: Space Physics, 2016, 121, 9732-9743.	2.4	31
27	Data processing of the active neutron experiment DAN for a Martian regolith investigation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 789, 114-127.	1.6	24
28	Ground tests with active neutron instrumentation for the planetary science missions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 788, 194-202.	1.6	12
29	Water equivalent hydrogen estimates from the first 200 sols of Curiosity's traverse (Bradbury) Tj ETQq1 1 experiment. Icarus, 2015, 262, 102-123.	0.784314 rg 2.5	gBT /Overloc 16
30	Radiation Environment Model of Protons and Heavier lons at Jupiter. , 2015, , .		2
31	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
32	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
33	Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument. Journal of Geophysical Research E: Planets, 2014, 119, 1579-1596.	3.6	52
34	Local variations of bulk hydrogen and chlorineâ€equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity. Journal of Geophysical Research E: Planets, 2014, 119, 1259-1275.	3.6	33
35	Anthology of the Development of Radiation Transport Tools as Applied to Single Event Effects. IEEE Transactions on Nuclear Science, 2013, 60, 1876-1911.	2.0	119
36	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326

Insoo Jun

#	Article	IF	CITATIONS
37	Neutron background environment measured by the Mars Science Laboratory's Dynamic Albedo of Neutrons instrument during the first 100 sols. Journal of Geophysical Research E: Planets, 2013, 118, 2400-2412.	3.6	28
38	Return to Europa: Overview of the Jupiter Europa orbiter mission. Advances in Space Research, 2011, 48, 629-650.	2.6	22
39	A study of Venus surface elemental composition from 14MeV neutron induced gamma ray spectroscopy: Activation analysis. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 629, 140-144.	1.6	18
40	Return to Europa: Overview of the Jupiter Europa Orbiter mission. , 2009, , .		5
41	Radiation environments and shielding approach for Jupiter Europa Orbiter (JEO). , 2009, , .		3
42	Long-term observations of the trapped high-energy proton population (L<4) by the NOAA Polar Orbiting Environmental Satellites (POES). Advances in Space Research, 2008, 41, 1261-1268.	2.6	20
43	Modeling of the Jovian Auroral Environment and Its Effects on Spacecraft Charging. IEEE Transactions on Plasma Science, 2008, 36, 2440-2449.	1.3	14
44	Review of an Internal Charging Code, NUMIT. IEEE Transactions on Plasma Science, 2008, 36, 2467-2472.	1.3	40
45	Europa's nearâ \in surface radiation environment. Geophysical Research Letters, 2007, 34, .	4.0	44
46	Statistics of the variations of the high-energy electron population between 7 and 28 jovian radii as measured by the Galileo spacecraft. Icarus, 2005, 178, 386-394.	2.5	35
47	Comparison of high-energy trapped particle environments at the earth and jupiter. Radiation Protection Dosimetry, 2005, 116, 50-54.	0.8	18
48	High-energy trapped particle environments at Jupiter: an update. IEEE Transactions on Nuclear Science, 2005, 52, 2281-2286.	2.0	21
49	Proton nonionizing energy loss (NIEL) for device applications. IEEE Transactions on Nuclear Science, 2003, 50, 1924-1928.	2.0	212
50	Benchmark study for energy deposition by energetic electrons in thick elemental slabs: Monte Carlo results and experiments. IEEE Transactions on Nuclear Science, 2003, 50, 1732-1739.	2.0	10
51	Monte Carlo simulations of the Galileo energetic particle detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 490, 465-475.	1.6	33