Zhuang Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3175370/zhuang-liu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

475	82,813 citations	152	280
papers		h-index	g-index
498	93,618 ext. citations	13.4	8.49
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
475	Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive and MRI-guided photonic breast-cancer hyperthermia in the NIR-II biowindow <i>Biomaterials Science</i> , 2022 ,	7.4	2
474	Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. <i>CheM</i> , 2022 , 8, 268-286	16.2	12
473	Nanovaccines with cell-derived components for cancer immunotherapy <i>Advanced Drug Delivery Reviews</i> , 2022 , 114107	18.5	3
472	Albumin-Based Therapeutics Capable of Glutathione Consumption and Hydrogen Peroxide Generation for Synergetic Chemodynamic and Chemotherapy of Cancer ACS Nano, 2022,	16.7	5
471	Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma <i>ACS Nano</i> , 2022 ,	16.7	7
470	Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy. <i>Bioactive Materials</i> , 2022 , 8, 409-419	16.7	15
469	Lipid-Coated CaCO Nanoparticles as a Versatile pH-Responsive Drug Delivery Platform to Enable Combined Chemotherapy of Breast Cancer <i>ACS Applied Bio Materials</i> , 2022 ,	4.1	1
468	High relaxivity Gd-based organic nanoparticles for efficient magnetic resonance angiography <i>Journal of Nanobiotechnology</i> , 2022 , 20, 170	9.4	0
467	Collagen-targeted tumor-specific transepithelial penetration enhancer mediated intravesical chemoimmunotherapy for non-muscle-invasive bladder cancer <i>Biomaterials</i> , 2022 , 283, 121422	15.6	4
466	Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy <i>Biomaterials</i> , 2022 , 283, 121428	15.6	5
465	Albumin-binding lipid-aptamer conjugates for cancer immunoimaging and immunotherapy. <i>Science China Chemistry</i> , 2022 , 65, 574-583	7.9	1
464	Targeting Endogenous Hydrogen Peroxide at Bone Defects Promotes Bone Repair. <i>Advanced Functional Materials</i> , 2022 , 32, 2111208	15.6	8
463	Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth <i>Nature Communications</i> , 2022 , 13, 2336	17.4	5
462	Biomedical polymers: synthesis, properties, and applications Science China Chemistry, 2022, 1-66	7.9	11
461	Eddy current thermal effect based on magnesium microrods for combined tumor therapy. <i>Chemical Engineering Journal</i> , 2022 , 446, 137038	14.7	O
460	Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment <i>Biomaterials</i> , 2021 , 281, 121332	15.6	4
459	Equipping Cancer Cell Membrane Vesicles with Functional DNA as a Targeted Vaccine for Cancer Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 9410-9418	11.5	6

(2021-2021)

458	Injectable Immunotherapeutic Thermogel for Enhanced Immunotherapy Post Tumor Radiofrequency Ablation. <i>Small</i> , 2021 , e2104773	11	3
457	Coordination Polymer-Coated CaCO Reinforces Radiotherapy by Reprogramming the Immunosuppressive Metabolic Microenvironment. <i>Advanced Materials</i> , 2021 , 34, e2106520	24	8
456	Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. <i>Biomaterials</i> , 2021 , 121250	15.6	8
455	Nanoparticle-Based Phototherapy in Combination with Checkpoint Blockade for Cancer Immunotherapy. <i>Bioanalysis</i> , 2021 , 209-222	0.5	
454	Mesenchymal Stem Cell-Derived Extracellular Vesicles with High PD-L1 Expression for Autoimmune Diseases Treatment. <i>Advanced Materials</i> , 2021 , e2106265	24	9
453	Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. <i>Advanced Drug Delivery Reviews</i> , 2021 , 179, 114004	18.5	7
452	Guiding Drug Through Interrupted Bloodstream for Potentiated Thrombolysis by C-Shaped Magnetic Actuation System In Vivo. <i>Advanced Materials</i> , 2021 , e2105351	24	7
451	ATP-Responsive Smart Hydrogel Releasing Immune Adjuvant Synchronized with Repeated Chemotherapy or Radiotherapy to Boost Antitumor Immunity. <i>Advanced Materials</i> , 2021 , 33, e2007910	24	43
450	Antitumor Agents Based on Metal©rganic Frameworks. <i>Angewandte Chemie</i> , 2021 , 133, 16901-16914	3.6	2
449	Antitumor Agents Based on Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16763-16776	16.4	46
448	Biological membrane derived nanomedicines for cancer therapy. Science China Chemistry, 2021, 64, 719	-7/333	8
447	Multifunctional MnO nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021 , 13, e1720	9.2	14
446	Immunosuppressive Nanoparticles for Management of Immune-Related Adverse Events in Liver. <i>ACS Nano</i> , 2021 , 15, 9111-9125	16.7	10
445	Aptamer-Based Logic Computing Reaction on Living Cells to Enable Non-Antibody Immune Checkpoint Blockade Therapy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8391-8401	16.4	15
444	Fluorinated Chitosan Mediated Synthesis of Copper Selenide Nanoparticles with Enhanced Penetration for Second Near-Infrared Photothermal Therapy of Bladder Cancer. <i>Advanced Therapeutics</i> , 2021 , 4, 2100043	4.9	2
443	Reactive Oxygen Species Scavenging Sutures for Enhanced Wound Sealing and Repair. <i>Small Structures</i> , 2021 , 2, 2100002	8.7	6
442	CaCO -Encapuslated Microspheres for Enhanced Transhepatic Arterial Embolization Treatment of Hepatocellular Carcinoma. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100748	10.1	4
441	Novel Multifunctional Stimuli-Responsive Nanoparticles for Synergetic Chemo-Photothermal Therapy of Tumors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 28802-28817	9.5	14

440	Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes. <i>Chemical Engineering Journal</i> , 2021 , 414, 128731	14.7	7
439	Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. <i>Nature Communications</i> , 2021 , 12, 4299	17.4	15
438	Biodegradable magnesium alloy with eddy thermal effect for effective and accurate magnetic hyperthermia ablation of tumors. <i>National Science Review</i> , 2021 , 8, nwaa122	10.8	11
437	Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001167	10.1	9
436	Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. <i>Nano Research</i> , 2021 , 14, 212-221	10	29
435	Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. <i>Biomaterials</i> , 2021 , 269, 120455	15.6	19
434	Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. <i>Journal of Controlled Release</i> , 2021 , 329, 882-893	11.7	6
433	Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation. <i>Biomaterials</i> , 2021 , 268, 120550	15.6	22
432	Thermo-Triggered In Situ Chitosan-Based Gelation System for Repeated and Enhanced Sonodynamic Therapy Post a Single Injection. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001208	10.1	5
43 ¹	Biomaterial-mediated internal radioisotope therapy. <i>Materials Horizons</i> , 2021 , 8, 1348-1366	14.4	8
430	Nanoparticle-Mediated Delivery of Inhaled Immunotherapeutics for Treating Lung Metastasis. <i>Advanced Materials</i> , 2021 , 33, e2007557	24	28
429	Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 1228-1237	11.5	16
428	Transmucosal Delivery of Self-Assembling Photosensitizer-Nitazoxanide Nanocomplexes with Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1485-1495	5.5	3
427	Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. <i>Small</i> , 2021 , 17, e2007486	11	49
426	Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. <i>Nano Today</i> , 2021 , 39, 101170	17.9	32
425	Mechanically active adhesive and immune regulative dressings for wound closure. <i>Matter</i> , 2021 , 4, 2985	5- B 10 9 0	15
424	Two-phase releasing immune-stimulating composite orchestrates protection against microbial infections. <i>Biomaterials</i> , 2021 , 277, 121106	15.6	0
423	A general in-situ reduction method to prepare core-shell liquid-metal / metal nanoparticles for photothermally enhanced catalytic cancer therapy. <i>Biomaterials</i> , 2021 , 277, 121125	15.6	9

(2020-2021)

422	Ultra-small natural product based coordination polymer nanodots for acute kidney injury relief. <i>Materials Horizons</i> , 2021 , 8, 1314-1322	14.4	10	
421	Bioorthogonal Coordination Polymer Nanoparticles with Aggregation-Induced Emission for Deep Tumor-Penetrating Radio- and Radiodynamic Therapy. <i>Advanced Materials</i> , 2021 , 33, e2007888	24	29	
420	Inorganic nanomaterials with rapid clearance for biomedical applications. <i>Chemical Society Reviews</i> , 2021 , 50, 8669-8742	58.5	55	
419	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14842-14853	16.4	30	
418	Photoactivated H Nanogenerator for Enhanced Chemotherapy of Bladder Cancer. <i>ACS Nano</i> , 2020 , 14, 8135-8148	16.7	32	
417	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie</i> , 2020 , 132, 14952-14963	3.6	1	
416	Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. <i>Biomaterials</i> , 2020 , 255, 120190	15.6	29	
415	Perfluorocarbon nanodroplets stabilized with cisplatin-prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer. <i>Nanoscale</i> , 2020 , 12, 14764-14774	7.7	13	
414	Injectable Nonmagnetic Liquid Metal for Eddy-Thermal Ablation of Tumors under Alternating Magnetic Field. <i>Small Methods</i> , 2020 , 4, 2000147	12.8	17	
413	Two-dimensional silicene composite nanosheets enable exogenous/endogenous-responsive and synergistic hyperthermia-augmented catalytic tumor theranostics. <i>Biomaterials</i> , 2020 , 256, 120206	15.6	34	
412	Photosensitizer-Modified MnO Nanoparticles to Enhance Photodynamic Treatment of Abscesses and Boost Immune Protection for Treated Mice. <i>Small</i> , 2020 , 16, e2000589	11	40	
411	Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. <i>Biomaterials</i> , 2020 , 255, 120202	15.6	37	
410	Ultrafine Titanium Monoxide (TiO) Nanorods for Enhanced Sonodynamic Therapy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6527-6537	16.4	151	
409	Synthesis of CaCO3-Based Nanomedicine for Enhanced Sonodynamic Therapy via Amplification of Tumor Oxidative Stress. <i>CheM</i> , 2020 , 6, 1391-1407	16.2	98	
408	Molecular domino reactor built by automated modular synthesis for cancer treatment. <i>Theranostics</i> , 2020 , 10, 4030-4041	12.1	9	
407	Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy. <i>Biomaterials</i> , 2020 , 246, 119971	15.6	29	
406	Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. <i>Science Advances</i> , 2020 , 6, eaaz4204	14.3	70	
405	Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. <i>Nanoscale Horizons</i> , 2020 , 5, 857-868	10.8	18	

404	Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. <i>Nano Today</i> , 2020 , 32, 100851	17.9	118
403	Biodegradable Nanoscale Coordination Polymers for Targeted Tumor Combination Therapy with Oxidative Stress Amplification. <i>Advanced Functional Materials</i> , 2020 , 30, 1908865	15.6	58
402	The enhanced permeability and retention effect based nanomedicine at the site of injury. <i>Nano Research</i> , 2020 , 13, 564-569	10	28
401	Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. <i>ACS Nano</i> , 2020 , 14, 1586-1599	16.7	77
400	Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. <i>International Journal of Pharmaceutics</i> , 2020 , 582, 119321	6.5	10
399	Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. <i>Nano Research</i> , 2020 , 13, 2209-2215	10	19
398	Calming Cytokine Storm in Pneumonia by Targeted Delivery of TPCA-1 Using Platelet-Derived Extracellular Vesicles. <i>Matter</i> , 2020 , 3, 287-301	12.7	53
397	Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy. <i>Applied Materials Today</i> , 2020 , 18, 100464	6.6	27
396	Ultrasmall Pyropheophorbidea Nanodots for Nearinfrared Fluorescence/Photoacoustic Imaging-guided Photodynamic Therapy. <i>Theranostics</i> , 2020 , 10, 62-73	12.1	22
395	GSH-Depleted PtCu3 Nanocages for Chemodynamic- Enhanced Sonodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 1907954	15.6	184
394	Effect of the Temperature on NO Release Characteristics in an O2/CO2 Atmosphere during Coal Combustion. <i>Energy & Combustion Senergy & </i>	4.1	5
393	In Situ Formed Fibrin Scaffold with Cyclophosphamide to Synergize with Immune Checkpoint Blockade for Inhibition of Cancer Recurrence after Surgery. <i>Advanced Functional Materials</i> , 2020 , 30, 1906922	15.6	33
392	Advances in imaging strategies for in vivo tracking of exosomes. <i>Wiley Interdisciplinary Reviews:</i> Nanomedicine and Nanobiotechnology, 2020 , 12, e1594	9.2	26
391	Chemiluminescent Nanosystems for Imaging Cancer Chemodynamic Therapy. <i>CheM</i> , 2020 , 6, 2127-2129	16.2	10
390	An implantable blood clot-based immune niche for enhanced cancer vaccination. <i>Science Advances</i> , 2020 , 6,	14.3	33
389	Surfactant-stripped J-aggregates of azaBODIPY derivatives: All-in-one phototheranostics in the second near infrared window. <i>Journal of Controlled Release</i> , 2020 , 326, 256-264	11.7	7
388	Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic Cancer Therapy. <i>ACS Nano</i> , 2020 , 14, 15119-15130	16.7	66
387	V-TiO2 nanospindles with regulating tumor microenvironment performance for enhanced sonodynamic cancer therapy. <i>Applied Physics Reviews</i> , 2020 , 7, 041411	17.3	29

(2020-2020)

386	Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced Sonodynamic/Chemodynamic Therapy. <i>ACS Applied Materials & District Research Sonodynamic Chemodynamic Therapy. ACS Applied Materials & District Research Sonodynamic Chemodynamic Therapy. ACS Applied Materials & District Research Sonodynamic Chemodynamic Therapy. <i>ACS Applied Materials & District Research Sonodynamic Chemodynamic Chemodynamic</i></i>	9.5	31
385	Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local Administration. <i>Nano Letters</i> , 2020 , 20, 6763-6773	11.5	31
384	Preparation of TiH nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy. <i>Nature Communications</i> , 2020 , 11, 3712	17.4	77
383	ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. <i>Biomaterials</i> , 2020 , 258, 120286	15.6	108
382	Recent progress of chemodynamic therapy-induced combination cancer therapy. <i>Nano Today</i> , 2020 , 35, 100946	17.9	140
381	Effect of CO2 on N Distribution in Pyrolysis and Oxidation of Volatile N and Char N in Oxy-Fuel Combustion at High Temperatures. <i>Energy & Description (Section 2020)</i> , 34, 9852-9861	4.1	1
380	Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. <i>Science Advances</i> , 2020 , 6, eaba3546	14.3	54
379	Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. <i>Nano Research</i> , 2020 , 13, 3057-3067	10	16
378	Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 50248-50259	9.5	12
377	A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. <i>Nature Nanotechnology</i> , 2020 , 15, 1043-1052	28.7	124
376	Recent advances in functional nanomaterials for X-ray triggered cancer therapy. <i>Progress in Natural Science: Materials International</i> , 2020 , 30, 567-576	3.6	14
375	Oxygen-Deficient Bimetallic Oxide FeWO Nanosheets as Peroxidase-Like Nanozyme for Sensing Cancer via Photoacoustic Imaging. <i>Small</i> , 2020 , 16, e2003496	11	29
374	Bimetallic Oxide FeWOX Nanosheets as Multifunctional Cascade Bioreactors for Tumor Microenvironment-Modulation and Enhanced Multimodal Cancer Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 2002753	15.6	36
373	Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. <i>Biomaterials</i> , 2020 , 228, 119568	15.6	69
372	Smart Injectable Hydrogels for Cancer Immunotherapy. Advanced Functional Materials, 2020, 30, 190278	8 5 5.6	90
371	Polyoxomolybdate (POM) nanoclusters with radiosensitizing and scintillating properties for low dose X-ray inducible radiation-radiodynamic therapy. <i>Nanoscale Horizons</i> , 2020 , 5, 109-118	10.8	14
370	2D Nanomaterials for Cancer Theranostic Applications. <i>Advanced Materials</i> , 2020 , 32, e1902333	24	193
369	CaCO-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy. <i>Nano-Micro Letters</i> , 2020 , 13, 29	19.5	15

368	Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. <i>Science Advances</i> , 2019 , 5, eaaw6870	14.3	131
367	Cerenkov Luminescence-Induced NO Release from 32P-Labeled ZnFe(CN)5NO Nanosheets to Enhance Radioisotope-Immunotherapy. <i>Matter</i> , 2019 , 1, 1061-1076	12.7	43
366	In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. <i>Biomaterials</i> , 2019 , 224, 119490	15.6	36
365	Nanoparticle-Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. <i>Advanced Materials</i> , 2019 , 31, e1802228	24	265
364	Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. <i>Biomaterials</i> , 2019 , 197, 368-379	15.6	37
363	High-yield synthesis of gold bipyramids for in vivo CT imaging and photothermal cancer therapy with enhanced thermal stability. <i>Chemical Engineering Journal</i> , 2019 , 378, 122025	14.7	16
362	Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune Checkpoint Blockade for Systemic Antitumor Therapy. <i>Nano Letters</i> , 2019 , 19, 4287-4296	11.5	113
361	Hyaluronidase with pH-responsive Dextran Modification as an Adjuvant Nanomedicine for Enhanced Photodynamic-Immunotherapy of Cancer. <i>Advanced Functional Materials</i> , 2019 , 29, 1902440	15.6	103
360	A Hypoxia-Responsive Albumin-Based Nanosystem for Deep Tumor Penetration and Excellent Therapeutic Efficacy. <i>Advanced Materials</i> , 2019 , 31, e1901513	24	159
359	Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. <i>Journal of Controlled Release</i> , 2019 , 304, 233-241	11.7	34
358	Fluorinated Polymer Mediated Transmucosal Peptide Delivery for Intravesical Instillation Therapy of Bladder Cancer. <i>Small</i> , 2019 , 15, e1900936	11	37
357	Light-Triggered In Situ Gelation to Enable Robust Photodynamic-Immunotherapy by Repeated Stimulations. <i>Advanced Materials</i> , 2019 , 31, e1900927	24	157
356	Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 18133-18144	9.5	72
355	Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. <i>Biomaterials</i> , 2019 , 207, 1-9	15.6	79
354	Take Immune Cells Back on Track: Glycopolymer-Engineered Tumor Cells for Triggering Immune Response. <i>ACS Macro Letters</i> , 2019 , 8, 337-344	6.6	19
353	Ultrasmall Oxygen-Deficient Bimetallic Oxide MnWO Nanoparticles for Depletion of Endogenous GSH and Enhanced Sonodynamic Cancer Therapy. <i>Advanced Materials</i> , 2019 , 31, e1900730	24	232
352	Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. <i>Advanced Materials</i> , 2019 , 31, e1806803	24	70
351	Fluorinated Polyethylenimine to Enable Transmucosal Delivery of Photosensitizer-Conjugated Catalase for Photodynamic Therapy of Orthotopic Bladder Tumors Postintravesical Instillation. Advanced Functional Materials 2019, 29, 1901932	15.6	64

(2018-2019)

350	Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment. <i>Coordination Chemistry Reviews</i> , 2019 , 398, 113009	23.2	42
349	Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. <i>Biomaterials</i> , 2019 , 219, 119374	15.6	34
348	Cell-Penetrating Peptide Enhanced Antigen Presentation for Cancer Immunotherapy. <i>Bioconjugate Chemistry</i> , 2019 , 30, 2115-2126	6.3	9
347	Intelligent protein-coated bismuth sulfide and manganese oxide nanocomposites obtained by biomineralization for multimodal imaging-guided enhanced tumor therapy. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5170-5181	7.3	17
346	Hollow Cu2Se Nanozymes for Tumor Photothermal-Catalytic Therapy. <i>Chemistry of Materials</i> , 2019 , 31, 6174-6186	9.6	122
345	Hybrid Protein Nano-Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodine-131 Delivery for Enhanced Radionuclide Therapy. <i>Small</i> , 2019 , 15, e1903628	11	17
344	Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. <i>Chemical Society Reviews</i> , 2019 , 48, 5506-5526	58.5	118
343	Ultrasound-Responsive Conversion of Microbubbles to Nanoparticles to Enable Background-Free in Vivo Photoacoustic Imaging. <i>Nano Letters</i> , 2019 , 19, 8109-8117	11.5	29
342	Nanoparticle-Embedded Electrospun Fiber-Covered Stent to Assist Intraluminal Photodynamic Treatment of Oesophageal Cancer. <i>Small</i> , 2019 , 15, e1904979	11	18
341	Renal Clearable Ru-based Coordination Polymer Nanodots for Photoacoustic Imaging Guided Cancer Therapy. <i>Theranostics</i> , 2019 , 9, 8266-8276	12.1	14
340	Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. <i>ACS Nano</i> , 2019 , 13, 13127-13135	16.7	43
339	Reactive Oxygen SpeciesActivatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/Chemodynamic Therapies. <i>Advanced Functional Materials</i> , 2019 , 29, 1905013	15.6	82
338	Controllable growth of Au nanostructures onto MoS nanosheets for dual-modal imaging and photothermal-radiation combined therapy. <i>Nanoscale</i> , 2019 , 11, 22788-22795	7.7	11
337	Amplification of Tumor Oxidative Stresses with Liposomal Fenton Catalyst and Glutathione Inhibitor for Enhanced Cancer Chemotherapy and Radiotherapy. <i>Nano Letters</i> , 2019 , 19, 805-815	11.5	217
336	Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. <i>Nano Research</i> , 2019 , 12, 1307-1312	10	50
335	Multifunctional Two-Dimensional Core-Shell MXene@Gold Nanocomposites for Enhanced Photo-Radio Combined Therapy in the Second Biological Window. <i>ACS Nano</i> , 2019 , 13, 284-294	16.7	148
334	In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	318
333	Core-shell TaOx@MnO nanoparticles as a nano-radiosensitizer for effective cancer radiotherapy. Journal of Materials Chemistry B, 2018 , 6, 2250-2257	7.3	30

332	2D magnetic titanium carbide MXene for cancer theranostics. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3541-3548	7.3	63
331	Upconversion Composite Nanoparticles for Tumor Hypoxia Modulation and Enhanced Near-Infrared-Triggered Photodynamic Therapy. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 1549	4 ⁹ 1555()3 ⁶⁶
330	Conjugated Polymers for Near-Infrared Photothermal Therapy of Cancer 2018 , 295-320		
329	pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined Photodynamic Chemotherapy of Cancer. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 14475-14482	9.5	70
328	Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. <i>Biomaterials</i> , 2018 , 162, 123-131	15.6	151
327	Synthesis of Hollow Biomineralized CaCO-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2165-2178	16.4	290
326	Reassembly of Zr-Labeled Cancer Cell Membranes into Multicompartment Membrane-Derived Liposomes for PET-Trackable Tumor-Targeted Theranostics. <i>Advanced Materials</i> , 2018 , 30, e1704934	24	63
325	Biomimetic Copper Sulfide for Chemo-Radiotherapy: Enhanced Uptake and Reduced Efflux of Nanoparticles for Tumor Cells under Ionizing Radiation. <i>Advanced Functional Materials</i> , 2018 , 28, 17051	6 ^{15.6}	55
324	2D MoS Nanostructures for Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701158	10.1	89
323	Red Blood Cells as Smart Delivery Systems. <i>Bioconjugate Chemistry</i> , 2018 , 29, 852-860	6.3	96
322	Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. <i>Nano Letters</i> , 2018 , 18, 2475-2484	11.5	245
321	Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. <i>Nanoscale</i> , 2018 , 10, 6981-6991	7.7	103
320	The acidic tumor microenvironment: a target for smart cancer nano-theranostics. <i>National Science Review</i> , 2018 , 5, 269-286	10.8	144
319	Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1802540	15.6	69
318	Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. <i>Biomaterials</i> , 2018 , 181, 81-91	15.6	89
317	2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. <i>Theranostics</i> , 2018 , 8, 1648-1664	12.1	116
316	Highly Effective Radioisotope Cancer Therapy with a Non-Therapeutic Isotope Delivered and Sensitized by Nanoscale Coordination Polymers. <i>ACS Nano</i> , 2018 , 12, 7519-7528	16.7	40
315	Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. <i>Biomaterials</i> , 2018 , 181, 310-317	15.6	118

(2018-2018)

314	Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. <i>Nano Today</i> , 2018 , 21, 55-73	17.9	169
313	Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. <i>Nature Biomedical Engineering</i> , 2018 , 2, 611-621	19	250
312	Platinum nanoworms for imaging-guided combined cancer therapy in the second near-infrared window. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 5069-5079	7.3	23
311	A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma. <i>International Journal of Nanomedicine</i> , 2018 , 13, 4433-4443	7.3	21
310	Bimetallic Oxide MnMoO Nanorods for in Vivo Photoacoustic Imaging of GSH and Tumor-Specific Photothermal Therapy. <i>Nano Letters</i> , 2018 , 18, 6037-6044	11.5	103
309	Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. <i>ACS Nano</i> , 2018 , 12, 9412-9422	16.7	72
308	Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. <i>Nano Research</i> , 2018 , 11, 3244-3257	10	60
307	Albumin-Assisted Synthesis of Ultrasmall FeS Nanodots for Imaging-Guided Photothermal Enhanced Photodynamic Therapy. <i>ACS Applied Materials & District Mater</i>	9.5	49
306	Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. <i>Carbon</i> , 2018 , 129, 495-503	10.4	11
305	NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. <i>Nano Research</i> , 2018 , 11, 5657-5669	10	55
304	Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. <i>Nano Letters</i> , 2018 , 18, 182-189	11.5	117
303	Manganese Dioxide Coated WS @Fe O /sSiO Nanocomposites for pH-Responsive MR Imaging and Oxygen-Elevated Synergetic Therapy. <i>Small</i> , 2018 , 14, 1702664	11	87
302	One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. <i>Biomaterials</i> , 2018 , 156, 121-133	15.6	59
301	Theranostic 2D ultrathin MnO nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. <i>Biomaterials</i> , 2018 , 155, 54-63	15.6	125
300	fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. <i>Quantitative Imaging in Medicine and Surgery</i> , 2018 , 8, 151-160	3.6	24
299	NIR organic dyes based on phenazine-cyanine for photoacoustic imaging-guided photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7420-7426	7.3	24
298	Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS)</i> 10, 43493-43502	9.5	36
297	Precise nanomedicine for intelligent therapy of cancer. <i>Science China Chemistry</i> , 2018 , 61, 1503-1552	7.9	256

296	Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of HO and Catalase for Enhanced Radio-Immunotherapy of Cancer. <i>Nano Letters</i> , 2018 , 18, 6360-6368	11.5	158
295	Surfactant-Stripped Micelles of Near Infrared Dye and Paclitaxel for Photoacoustic Imaging Guided Photothermal-Chemotherapy. <i>Small</i> , 2018 , 14, e1802991	11	36
294	G-Quadruplex-Based Nanoscale Coordination Polymers to Modulate Tumor Hypoxia and Achieve Nuclear-Targeted Drug Delivery for Enhanced Photodynamic Therapy. <i>Nano Letters</i> , 2018 , 18, 6867-687	′5 ^{11.5}	126
293	Tumor-pH-Responsive Dissociable Albumin-Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. <i>Small</i> , 2018 , 14, e1803262	2 11	70
292	Calcium Bisphosphonate Nanoparticles with Chelator-Free Radiolabeling to Deplete Tumor-Associated Macrophages for Enhanced Cancer Radioisotope Therapy. <i>ACS Nano</i> , 2018 , 12, 1154	1-1675	1 ⁷¹
291	Bioinspired tumor-homing nanosystem for precise cancer therapy via reprogramming of tumor-associated macrophages. <i>NPG Asia Materials</i> , 2018 , 10, 1002-1015	10.3	43
290	Protein-Engineered Biomaterials for Cancer Theranostics. Advanced Healthcare Materials, 2018, 7, e180	0.21.3	21
289	Covalent Organic Polymers Based on Fluorinated Porphyrin as Oxygen Nanoshuttles for Tumor Hypoxia Relief and Enhanced Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1804901	15.6	127
288	Innovative Strategien fildie photodynamische Therapie hypoxischer Tumore. <i>Angewandte Chemie</i> , 2018 , 130, 11694-11704	3.6	67
287	Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11522-11531	16.4	525
286	Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. <i>ACS Nano</i> , 2018 , 12, 5121-5129	16.7	303
285	Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer. <i>Nanoscale</i> , 2018 , 10, 13976-13985	7.7	33
284	Postoperative executive function in adult moyamoya disease: a preliminary study of its functional anatomy and behavioral correlates. <i>Journal of Neurosurgery</i> , 2017 , 126, 527-536	3.2	21
283	Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation exchange for multimodal imaging and synergistic thermo-radiotherapy. <i>NPG Asia Materials</i> , 2017 , 9, e344-e344	10.3	41
282	Nanoscale-Coordination-Polymer-Shelled Manganese Dioxide Composite Nanoparticles: A Multistage Redox/pH/H2O2-Responsive Cancer Theranostic Nanoplatform. <i>Advanced Functional Materials</i> , 2017 , 27, 1605926	15.6	156
281	Photosensitizer Decorated Red Blood Cells as an Ultrasensitive Light-Responsive Drug Delivery System. <i>ACS Applied Materials & Description</i> (2017), 9, 5855-5863	9.5	41
280	Chelator-Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. <i>Angewandte Chemie</i> , 2017 , 129, 2935-2938	3.6	9
279	Chelator-Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2889-2892	16.4	53

(2017-2017)

278	HO-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 5343-5348	11.5	331
277	Albumin-Templated Manganese Dioxide Nanoparticles for Enhanced Radioisotope Therapy. <i>Small</i> , 2017 , 13, 1700640	11	59
276	Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. <i>Biomaterials</i> , 2017 , 138, 13-21	15.6	152
275	Bottom-Up Preparation of Uniform Ultrathin Rhenium Disulfide Nanosheets for Image-Guided Photothermal Radiotherapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1700250	15.6	80
274	Redox-Sensitive Nanoscale Coordination Polymers for Drug Delivery and Cancer Theranostics. <i>ACS Applied Materials & Delivery and Cancer Theranostics a</i>	9.5	103
273	Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy. <i>Biomaterials Science</i> , 2017 , 5, 1828-1835	7.4	31
272	Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. <i>Advanced Materials</i> , 2017 , 29, 1700996	24	336
271	Label-Free, Quantitative Imaging of MoS -Nanosheets in Live Cells with Simultaneous Stimulated Raman Scattering and Transient Absorption Microscopy. <i>Advanced Biology</i> , 2017 , 1, e1700013	3.5	23
270	Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. <i>ACS Nano</i> , 2017 , 11, 4463-4474	16.7	442
269	Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. <i>Nanoscale</i> , 2017 , 9, 4826-4834	7.7	36
268	Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. <i>ACS Nano</i> , 2017 , 11, 927-937	16.7	281
267	Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. <i>Biomaterials Science</i> , 2017 , 5, 331-340	7.4	56
266	Drug-Loaded Mesoporous Tantalum Oxide Nanoparticles for Enhanced Synergetic Chemoradiotherapy with Reduced Systemic Toxicity. <i>Small</i> , 2017 , 13, 1602869	11	48
265	pH-Sensitive Dissociable Nanoscale Coordination Polymers with Drug Loading for Synergistically Enhanced Chemoradiotherapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1703832	15.6	48
264	Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. <i>Biomaterials</i> , 2017 , 148, 69-80	15.6	64
263	Hollow MnO as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. <i>Nature Communications</i> , 2017 , 8, 902	17.4	781
262	Photothermal Therapy: 1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy (Adv. Mater. 40/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
261	Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for Synergistic Combined Chemo-radioisotope Therapy of Cancer. <i>Theranostics</i> , 2017 , 7, 614-623	12.1	66

260	1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy. <i>Advanced Materials</i> , 2017 , 29, 1703588	24	257
259	Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication. <i>ACS Nano</i> , 2017 , 11, 9467-9480	16.7	173
258	Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer. <i>ACS Nano</i> , 2017 , 11, 9103-9111	16.7	62
257	Surface-Engineering of Red Blood Cells as Artificial Antigen Presenting Cells Promising for Cancer Immunotherapy. <i>Small</i> , 2017 , 13, 1701864	11	39
256	Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. <i>Chemistry of Materials</i> , 2017 , 29, 8637-8652	9.6	193
255	Albumin-templated biomineralizing growth of composite nanoparticles as smart nano-theranostics for enhanced radiotherapy of tumors. <i>Nanoscale</i> , 2017 , 9, 14826-14835	7.7	60
254	Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. <i>Biomaterials</i> , 2017 , 146, 40-48	15.6	8o
253	Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy. <i>Advanced Materials</i> , 2017 , 29, 1701429	24	315
252	Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of Cu and multimodal imaging-guided photothermal therapy. <i>Nanoscale</i> , 2017 , 9, 12609-12617	7.7	77
251	Metallic oxide nanocrystals with near-infrared plasmon resonance for efficient, stable and biocompatible photothermal cancer therapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 7393-7402	7.3	17
250	Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12991-12996	16.4	95
249	Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. <i>Angewandte Chemie</i> , 2017 , 129, 13171-13176	3.6	33
248	Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging. <i>ACS Nano</i> , 2017 , 11, 12193-12201	16.7	27
247	Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. <i>ACS Nano</i> , 2017 , 11, 12696-12712	16.7	223
246	Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. <i>Nano Research</i> , 2017 , 10, 1200-1212	10	105
245	TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. <i>Biomaterials</i> , 2017 , 112, 257-263	15.6	156
244	Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection. <i>Biomaterials</i> , 2017 , 127, 13-24	15.6	97
243	Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. <i>Journal of Controlled Release</i> , 2017 , 263, 79-89	11.7	126

242	In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS (M = Mo, W, Ti) Nanosheets. <i>Advanced Science</i> , 2017 , 4, 1600160	13.6	147
241	Renal-Clearable PEGylated Porphyrin Nanoparticles for Image-guided Photodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1702928	15.6	90
240	Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. <i>Nano Research</i> , 2016 , 9, 3003-3017	10	109
239	Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy. <i>Small</i> , 2016 , 12, 3967-75	11	45
238	Nanographene in Biomedical Applications 2016 , 251-282		3
237	Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. <i>Nano Letters</i> , 2016 , 16, 6145-6153	11.5	400
236	Biomedical Applications of Carbon Nanomaterials 2016 , 131-162		2
235	Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14569-14574	16.4	295
234	Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. <i>Nature Communications</i> , 2016 , 7, 13193	17.4	963
233	Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. <i>Angewandte Chemie</i> , 2016 , 128, 14789-14794	3.6	99
232	FeSe-Decorated BiSe Nanosheets Fabricated via Cation Exchange for Chelator-Free Cu-labeling and Multimodal Image-Guided Photothermal-Radiation Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 2185-2197	15.6	193
231	Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 5490-5498	15.6	391
230	Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer. <i>Advanced Materials</i> , 2016 , 28, 2716-23	24	416
229	Cancer Therapy: Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer (Adv. Mater. 14/2016). <i>Advanced Materials</i> , 2016 , 28, 2654-2654	24	10
228	Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2122-6	5 ^{16.4}	212
227	Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease. <i>ACS Applied Materials & Disease</i> , 17955-63	9.5	40
226	Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. <i>Chemical Society Reviews</i> , 2016 , 45, 6250-6269	58.5	286
225	Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. <i>Biomaterials</i> , 2016 , 100, 101-9	15.6	45

224	Recent advances in the development of nanomaterials for DC-based immunotherapy. <i>Science Bulletin</i> , 2016 , 61, 514-523	10.6	8
223	Cisplatin-Prodrug-Constructed Liposomes as a Versatile Theranostic Nanoplatform for Bimodal Imaging Guided Combination Cancer Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 2207-2217	15.6	126
222	Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform. <i>Angewandte Chemie</i> , 2016 , 128, 2162-2166	3.6	8
221	Nanoscale Metal-Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Therapy. <i>ACS Nano</i> , 2016 , 10, 2774-81	16.7	244
220	Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity. <i>Nanoscale</i> , 2016 , 8, 3785-95	7.7	62
219	Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. <i>Nano Research</i> , 2016 , 9, 139-148	10	59
218	Photothermal therapy by using titanium oxide nanoparticles. <i>Nano Research</i> , 2016 , 9, 1236-1243	10	70
217	Readout-segmented echo-planar imaging in the evaluation of sinonasal lesions: A comprehensive comparison of image quality in single-shot echo-planar imaging. <i>Magnetic Resonance Imaging</i> , 2016 , 34, 166-72	3.3	38
216	Functionalized graphene oxide in microbial engineering: An effective stimulator for bacterial growth <i>Carbon</i> , 2016 , 103, 172-180	10.4	19
215	Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy. <i>Theranostics</i> , 2016 , 6, 1833-43	12.1	87
214	Polydopamine Nanoparticles as a Versatile Molecular Loading Platform to Enable Imaging-guided Cancer Combination Therapy. <i>Theranostics</i> , 2016 , 6, 1031-42	12.1	196
213	Intelligent Albumin-MnO2 Nanoparticles as pH-/H2 O2 -Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. <i>Advanced Materials</i> , 2016 , 28, 7129-36	24	690
212	Catalase-Loaded TaOx Nanoshells as Bio-Nanoreactors Combining High-Z Element and Enzyme Delivery for Enhancing Radiotherapy. <i>Advanced Materials</i> , 2016 , 28, 7143-8	24	283
211	Light-Responsive, Singlet-Oxygen-Triggered On-Demand Drug Release from Photosensitizer-Doped Mesoporous Silica Nanorods for Cancer Combination Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 4722-4732	15.6	122
210	Albumin Carriers for Cancer Theranostics: A Conventional Platform with New Promise. <i>Advanced Materials</i> , 2016 , 28, 10557-10566	24	173
209	Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy. <i>Nano Letters</i> , 2016 , 16, 2512-21	11.5	216
208	Au@MnS@ZnS Core/Shell/Shell Nanoparticles for Magnetic Resonance Imaging and Enhanced Cancer Radiation Therapy. <i>ACS Applied Materials & Cancer Radiation Therapy</i> . <i>ACS Applied Materials & Cancer Radiation Therapy</i> .	9.5	54
207	Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. <i>Advanced Drug Delivery Reviews</i> , 2016 , 105, 228-241	18.5	290

(2015-2016)

206	Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. <i>Biomaterials</i> , 2016 , 100, 91-100	15.6	26
205	Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. <i>Nanoscale</i> , 2016 , 8, 12683-92	7.7	50
204	Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. <i>Coordination Chemistry Reviews</i> , 2016 , 320-321, 100-117	23.2	123
203	Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. <i>Biomaterials</i> , 2016 , 97, 1-9	15.6	300
202	Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. <i>Biomaterials</i> , 2016 , 98, 23-30	15.6	147
201	Facile Preparation of Multifunctional WS /WO Nanodots for Chelator-Free Zr-Labeling and In Vivo PET Imaging. <i>Small</i> , 2016 , 12, 5750-5758	11	27
200	All-in-One Theranostic Nanoplatform Based on Hollow TaOx for Chelator-Free Labeling Imaging, Drug Delivery, and Synergistically Enhanced Radiotherapy. <i>Advanced Functional Materials</i> , 2016 , 26, 824	3 -8 254	1 ⁷²
199	Synthesis of a UCNPs@SiO2@gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. <i>RSC Advances</i> , 2016 , 6, 98968-98974	3.7	11
198	CaCO nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. <i>Biomaterials</i> , 2016 , 110, 60-70	15.6	165
197	Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26630-26637	9.5	102
196	CoreBhell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. <i>Nano Research</i> , 2016 , 9, 3267-3278	10	124
195	Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. <i>Nanoscale</i> , 2016 , 8, 15323-39	7.7	65
194	In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. <i>Biomaterials</i> , 2016 , 104, 361-71	15.6	93
193	Two-dimensional TiSIhanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. <i>Nanoscale</i> , 2015 , 7, 6380-7	7.7	165
192	Remotely Controlled Red Blood Cell Carriers for Cancer Targeting and Near-Infrared Light-Triggered Drug Release in Combined Photothermal@hemotherapy. <i>Advanced Functional Materials</i> , 2015 , 25, 2386-2394	15.6	133
191	Up-Conversion Nanoparticles for Early Cancer Diagnosis. <i>Frontiers in Nanobiomedical Research</i> , 2015 , 1-19		
190	Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2786-2800	7.3	29
189	Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. <i>Biomaterials</i> , 2015 , 66, 21-8	15.6	158

188	Poly-(allylamine hydrochloride)-coated but not poly(acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5769-5776	7.3	12
187	Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. <i>Biomaterials</i> , 2015 , 57, 84-92	15.6	78
186	Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. <i>ACS Applied Materials & District Research</i> , 7, 11575-82	9.5	89
185	MoS2-based nanoprobes for detection of silver ions in aqueous solutions and bacteria. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 7526-33	9.5	69
184	Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted Combination Therapy. <i>ACS Nano</i> , 2015 , 9, 5223-33	16.7	269
183	Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. <i>Biomaterials</i> , 2015 , 54, 55-6	52 ^{15.6}	89
182	Ultrathin MoS2(1☑)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2015 , 5, 2213-2219	13.1	396
181	Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant. <i>Nanoscale</i> , 2015 , 7, 19282-92	7.7	17
180	Bottom-Up Synthesis of Metal-Ion-Doped WSINanoflakes for Cancer Theranostics. <i>ACS Nano</i> , 2015 , 9, 11090-101	16.7	226
179	Nanoscale theranostics for physical stimulus-responsive cancer therapies. <i>Biomaterials</i> , 2015 , 73, 214-3	0 15.6	154
178	Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. <i>Nanoscale</i> , 2015 , 7, 16399-416	7.7	46
177	Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27324-30	9.5	95
176	Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. <i>Nanoscale</i> , 2015 , 7, 20757-68	7.7	39
175	The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 601-1	2 8	94
174	Mesoporous Silica Coated Single-Walled Carbon Nanotubes as a Multifunctional Light-Responsive Platform for Cancer Combination Therapy. <i>Advanced Functional Materials</i> , 2015 , 25, 384-392	15.6	202
173	A versatile @lick chemistry@oute to size-restricted, robust, and functionalizable hydrophilic nanocrystals. <i>Small</i> , 2015 , 11, 1644-8	11	11
172	An imagable and photothermal "Abraxane-like" nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. <i>Advanced Materials</i> , 2015 , 27, 903-10	24	340
171	Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. <i>Nano Research</i> , 2015 , 8, 751-764	10	98

170	Recent advances in the development of organic photothermal nano-agents. Nano Research, 2015, 8, 34	10 <u>1</u> 354	334
169	FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. <i>Biomaterials</i> , 2015 , 38, 1-9	15.6	138
168	VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vivo. <i>Biomaterials</i> , 2015 , 39, 39-46	15.6	61
167	Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPS34 complex. <i>International Journal of Nanomedicine</i> , 2015 , 10, 207-16	7.3	33
166	Near-infrared dye bound human serum albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy preventing tumor metastasis. <i>Journal of Controlled Release</i> , 2015 , 213, e89	11.7	5
165	cRGD-Functionalized AuNR-cored PEG-PCL nanoparticles for efficacious glioma chemotherapy. Journal of Controlled Release, 2015 , 213, e135	11.7	4
164	A Self-Assembled Albumin-Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. <i>Advanced Materials</i> , 2015 , 27, 6820-7	24	198
163	Core-Shell MnSe@Bi2 Se3 Fabricated via a Cation Exchange Method as Novel Nanotheranostics for Multimodal Imaging and Synergistic Thermoradiotherapy. <i>Advanced Materials</i> , 2015 , 27, 6110-7	24	289
162	Photosensitizer-Conjugated Albumin-Polypyrrole Nanoparticles for Imaging-Guided In Vivo Photodynamic/Photothermal Therapy. <i>Small</i> , 2015 , 11, 3932-41	11	209
161	Magnetic Field-Enhanced Photothermal Ablation of Tumor Sentinel Lymph Nodes to Inhibit Cancer Metastasis. <i>Small</i> , 2015 , 11, 4856-63	11	29
160	Imaging-Guided Combined Photothermal and Radiotherapy to Treat Subcutaneous and Metastatic Tumors Using Iodine-131-Doped Copper Sulfide Nanoparticles. <i>Advanced Functional Materials</i> , 2015 , 25, 4689-4699	15.6	184
159	Polydopamine as a Biocompatible Multifunctional Nanocarrier for Combined Radioisotope Therapy and Chemotherapy of Cancer. <i>Advanced Functional Materials</i> , 2015 , 25, 7327-7336	15.6	175
158	Graphene Oxide Selectively Enhances Thermostability of Trypsin. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 12270-7	9.5	30
157	Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. <i>ACS Nano</i> , 2015 , 9, 6401-11	16.7	160
156	Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. <i>Biomaterials</i> , 2015 , 60, 62-71	15.6	226
155	Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. <i>ACS Nano</i> , 2015 , 9, 950-60	16.7	406
154	Two Dimensional Transitional Metal Dichalcogenides for Biomedical Applications. <i>Acta Chimica Sinica</i> , 2015 , 73, 902	3.3	8
153	Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. <i>Advanced Materials</i> , 2014 , 26, 3433-40	24	919

152	PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. <i>Advanced Materials</i> , 2014 , 26, 1886-93	24	899
151	Sub-100 nm hollow Au-Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy. <i>Biomaterials</i> , 2014 , 35, 4099-107	15.6	74
150	Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy. <i>Advanced Functional Materials</i> , 2014 , 24, 1194-1201	15.6	226
149	Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. <i>Advanced Materials</i> , 2014 , 26, 4794-802	24	183
148	Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7860-3	16.4	561
147	Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. <i>Nanoscale</i> , 2014 , 6, 199-202	7.7	115
146	Conjugated polymers for photothermal therapy of cancer. <i>Polymer Chemistry</i> , 2014 , 5, 1573-1580	4.9	191
145	A versatile Fe3O4 based platform via iron-catalyzed AGET ATRP: towards various multifunctional nanomaterials. <i>Polymer Chemistry</i> , 2014 , 5, 638-645	4.9	25
144	Magnetic Targeting Enhanced Theranostic Strategy Based on Multimodal Imaging for Selective Ablation of Cancer. <i>Advanced Functional Materials</i> , 2014 , 24, 2312-2321	15.6	89
143	Imaging: PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy (Adv. Mater. 12/2014). <i>Advanced Materials</i> , 2014 , 26, 1794-1794	24	15
142	Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. <i>Nano Research</i> , 2014 , 7, 1327-1336	10	59
141	Photoacoustic Imaging Guided Near-Infrared Photothermal Therapy Using Highly Water-Dispersible Single-Walled Carbon Nanohorns as Theranostic Agents. <i>Advanced Functional Materials</i> , 2014 , 24, 6621-	-6628	111
140	Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. <i>Nanoscale</i> , 2014 , 6, 9198-205	7.7	122
139	In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4726-4732	7-3	35
138	PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. <i>Biomaterials</i> , 2014 , 35, 9844-9852	15.6	176
137	Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. <i>Nanoscale</i> , 2014 , 6, 14903-10	7.7	45
136	Supramolecular self-assembly enhanced europium(III) luminescence under visible light. <i>Soft Matter</i> , 2014 , 10, 4686-93	3.6	26
135	Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Applied Materials & amp; Interfaces, 2014, 6, 8542-8	9.5	153

134	Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. <i>ACS Nano</i> , 2014 , 8, 10621-30	16.7	230
133	Specific detection and simultaneously localized photothermal treatment of cancer cells using layer-by-layer assembled multifunctional nanoparticles. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 6443-52	9.5	27
132	Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. <i>Biomaterials</i> , 2014 , 35, 8206-14	15.6	176
131	Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1261-71	10.1	132
130	Engineering of Multifunctional Nano-Micelles for Combined Photothermal and Photodynamic Therapy Under the Guidance of Multimodal Imaging. <i>Advanced Functional Materials</i> , 2014 , 24, 6492-6503	2 ^{15.6}	216
129	Functional nanomaterials for phototherapies of cancer. <i>Chemical Reviews</i> , 2014 , 114, 10869-939	68.1	1771
128	Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. <i>Nanoscale</i> , 2014 , 6, 11219-25	7.7	277
127	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. <i>Nanoscale</i> , 2014 , 6, 10505-10	7.7	315
126	Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. <i>Biomaterials</i> , 2014 , 35, 2915-23	15.6	265
125	Patterned substrates of nano-graphene oxide mediating highly localized and efficient gene delivery. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 5900-7	9.5	31
124	An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. <i>Biomaterials</i> , 2014 , 35, 9355-62	15.6	168
123	cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. <i>Journal of Controlled Release</i> , 2014 , 195, 63-71	11.7	67
122	Bifunctional nanoparticles with magnetism and NIR fluorescence: controlled synthesis from combination of AGET ATRP and @lick@eaction. <i>Nanotechnology</i> , 2014 , 25, 045602	3.4	20
121	Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. <i>Advanced Materials</i> , 2014 , 26, 5646-52	24	383
120	J-aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915-nm light. <i>Small</i> , 2014 , 10, 4362-70	11	74
119	Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. <i>Advanced Materials</i> , 2014 , 26, 8154-6	524	413
118	Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles. <i>Theranostics</i> , 2014 , 4, 134-41	12.1	117
117	Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. <i>Theranostics</i> , 2014 , 4, 229-39	12.1	183

116	Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. <i>Small</i> , 2014 , 10, 1544-54	11	174
115	Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform. <i>Nanotechnology</i> , 2013 , 24, 015103	3.4	14
114	Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. <i>ACS Nano</i> , 2013 , 7, 6782-95	16.7	404
113	Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. <i>Theranostics</i> , 2013 , 3, 317-30	12.1	307
112	Near-Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy. <i>Advanced Functional Materials</i> , 2013 , 23, 6059-6067	15.6	135
111	PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. <i>Biomaterials</i> , 2013 , 34, 9160-70	15.6	163
110	Stem Cell Labeling and Tracking with Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 1006-1017	3.1	26
109	Magnetic PEGylated Pt3Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study. <i>Nanoscale</i> , 2013 , 5, 12464-73	7.7	18
108	Carbon nanotubes for biomedical imaging: the recent advances. <i>Advanced Drug Delivery Reviews</i> , 2013 , 65, 1951-63	18.5	253
107	Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 10381-8	9.5	64
106	Facile fabrication of biocompatible and tunable multifunctional nanomaterials via iron-mediated atom transfer radical polymerization with activators generated by electron transfer. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 1, 19663-9	9.5	22
105	The advantage of reversible coordination polymers in producing visible light sensitized Eu(III) emissions over EDTA via excluding water from the coordination sphere. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16641-7	3.6	20
104	Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3144-3151	7.3	24
103	Preparation and functionalization of graphene nanocomposites for biomedical applications. <i>Nature Protocols</i> , 2013 , 8, 2392-403	18.8	242
102	Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. <i>Biomaterials</i> , 2013 , 34, 8960-7	15.6	88
101	Nano-graphene in biomedicine: theranostic applications. <i>Chemical Society Reviews</i> , 2013 , 42, 530-47	58.5	1297
100	Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. <i>Nanoscale</i> , 2013 , 5, 23-37	7.7	303
99	Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. <i>Advanced Functional Materials</i> , 2013 , 23, 3077-3086	15.6	294

(2012-2013)

98	Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. <i>Biomaterials</i> , 2013 , 34, 3002-9	15.6	131
97	Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. <i>Biomaterials</i> , 2013 , 34, 4786-93	15.6	282
96	High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model. <i>Nano Today</i> , 2013 , 8, 126-126	17.9	46
95	PEGylated Micelle Nanoparticles Encapsulating a Non-Fluorescent Near-Infrared Organic Dye as a Safe and Highly-Effective Photothermal Agent for In Vivo Cancer Therapy. <i>Advanced Functional Materials</i> , 2013 , 23, 5893-5902	15.6	212
94	Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. <i>Biomaterials</i> , 2013 , 34, 3639-46	15.6	205
93	Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. <i>Small</i> , 2013 , 9, 1989-97	11	336
92	In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. <i>Biomaterials</i> , 2013 , 34, 2787-95	15.6	317
91	Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. <i>Biomacromolecules</i> , 2013 , 14, 2411-9	6.9	106
90	PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2013 , 9, 1077-88	6	62
89	Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. <i>ACS Applied Materials & M</i>	9.5	348
88	Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1370-7	9.5	80
87	Hydrophilic hybrid materials with magnetism & NIR fluorescence via surface-initiated RAFT polymerization. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3257-3266	7.3	2
86	Behavior and toxicity of graphene and its functionalized derivatives in biological systems. <i>Small</i> , 2013 , 9, 1492-503	11	353
85	Multifunctional Upconversion Nanoparticles for Dual-Modal Imaging-Guided Stem Cell Therapy under Remote Magnetic Control. <i>Advanced Functional Materials</i> , 2013 , 23, 272-280	15.6	125
84	Dual-Polymer-Functionalized Nanoscale Graphene Oxide as a Highly Effective Gene Transfection Agent for Insect Cells with Cell-Type-Dependent Cellular Uptake Mechanisms. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 794-803	3.1	31
83	Biomedical Applications: Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light (Adv. Funct. Mater. 24/2013). Advanced Functional Materials, 2013 , 23, 3018-3018	15.6	2
82	The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. <i>Biomaterials</i> , 2012 , 33, 2206-14	15.6	625
81	Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. <i>Biomaterials</i> , 2012 , 33, 2215-22	15.6	323

80	Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. <i>Biomaterials</i> , 2012 , 33, 4872-81	15.6	121
79	Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. <i>Advanced Materials</i> , 2012 , 24, 1868-72	24	785
78	Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. <i>Advanced Materials</i> , 2012 , 24, 1987-93	24	626
77	Carbon nanotubes in biology and medicine: An overview. Science Bulletin, 2012, 57, 167-180		22
76	Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews, 2012, 41, 1323-49	58.5	1352
75	In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. <i>ACS Nano</i> , 2012 , 6, 2361-70	16.7	279
74	In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. <i>Advanced Materials</i> , 2012 , 24, 5586-92	24	607
73	Carrier-free, water dispersible and highly luminescent dye nanoparticles for targeted cell imaging. <i>Nanoscale</i> , 2012 , 4, 5373-7	7.7	30
72	Nano-carbons as theranostics. <i>Theranostics</i> , 2012 , 2, 235-7	12.1	104
71	Ultrabright and ultrastable near-infrared dye nanoparticles for in vitro and in vivo bioimaging. <i>Biomaterials</i> , 2012 , 33, 7803-9	15.6	69
70	In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. <i>Small</i> , 2012 , 8, 281-90	11	507
69	Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. <i>Journal of the American Chemical Society</i> , 2012 , 134, 741.	4 ⁻¹⁶ 2 ⁴	391
68	Carrier-free, functionalized drug nanoparticles for targeted drug delivery. <i>Chemical Communications</i> , 2012 , 48, 8120-2	5.8	54
67	Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. <i>ACS Nano</i> , 2012 , 6, 4694-701	16.7	207
66	Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. <i>Nano Letters</i> , 2012 , 12, 3369-77	11.5	172
65	Protamine Functionalized Single-Walled Carbon Nanotubes for Stem Cell Labeling and In Vivo Raman/Magnetic Resonance/Photoacoustic Triple-Modal Imaging. <i>Advanced Functional Materials</i> , 2012 , 22, 2363-2375	15.6	106
64	In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 3179-3183	3.6	70
63	In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3125-9	16.4	398

(2011-2012)

62	Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. <i>ACS Nano</i> , 2012 , 6, 4864-75	16.7	173
61	Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. <i>ACS Nano</i> , 2012 , 6, 5605-13	16.7	371
60	A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. <i>Nano Research</i> , 2012 , 5, 199-212	10	494
59	Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. <i>Carbon</i> , 2012 , 50, 3008-3014	10.4	41
58	In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes. <i>Current Drug Metabolism</i> , 2012 , 13, 1057-67	3.5	22
57	Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5786		77
56	Multicolor In Vivo Imaging of Upconversion Nanoparticles with Emissions Tuned by Luminescence Resonance Energy Transfer. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2686-2692	3.8	161
55	Upconversion nanoparticles for potential cancer theranostics. <i>Therapeutic Delivery</i> , 2011 , 2, 1235-9	3.8	13
54	In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. <i>Nanomedicine</i> , 2011 , 6, 1327-40	5.6	170
53	In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. <i>ACS Nano</i> , 2011 , 5, 516-22	16.7	693
52	Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. <i>Biomaterials</i> , 2011 , 32, 9364-73	15.6	251
51	Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. <i>ACS Nano</i> , 2011 , 5, 7000-9	16.7	874
50	Graphene based gene transfection. <i>Nanoscale</i> , 2011 , 3, 1252-7	7.7	479
49	Graphene in biomedicine: opportunities and challenges. <i>Nanomedicine</i> , 2011 , 6, 317-24	5.6	572
48	Single-walled carbon nanotubes in biomedical imaging. <i>Journal of Materials Chemistry</i> , 2011 , 21, 586-59	98	128
47	Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. <i>Biomaterials</i> , 2011 , 32, 144-51	15.6	357
46	Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. <i>Biomaterials</i> , 2011 , 32, 1110-20	15.6	548
45	Carbon materials for drug delivery & cancer therapy. <i>Materials Today</i> , 2011 , 14, 316-323	21.8	466

44	Nanoplatforms for Raman Molecular Imaging in Biological Systems 2011 , 197-216		2
43	Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy. <i>Angewandte Chemie</i> , 2011 , 123, 7523-7528	3.6	172
42	Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals. <i>Angewandte Chemie</i> , 2011 , 123, 10553-10556	3.6	44
41	Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7385-90	16.4	526
40	Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10369-72	16.4	389
39	Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution in tumor-bearing mice. <i>Biomacromolecules</i> , 2011 , 12, 1460-7	6.9	138
38	In vitro and in vivo behaviors of dextran functionalized graphene. Carbon, 2011, 49, 4040-4049	10.4	273
37	Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. <i>Biomaterials</i> , 2011 , 32, 6145-54	15.6	675
36	Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. <i>Nano Letters</i> , 2010 , 10, 3318-23	11.5	1977
35	Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. <i>Nano Letters</i> , 2010 , 10, 2168-72	11.5	331
34	Inorganic nanomaterials for tumor angiogenesis imaging. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2010 , 37 Suppl 1, S147-63	8.8	38
33	Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. <i>Nano Research</i> , 2010 , 3, 722-732	10	261
32	Multiplexed Five-Color Molecular Imaging of Cancer Cells and Tumor Tissues with Carbon Nanotube Raman Tags in the Near-Infrared. <i>Nano Research</i> , 2010 , 3, 222-233	10	118
31	Carbon nanotubes for in vivo cancer nanotechnology. Science China Chemistry, 2010, 53, 2217-2225	7.9	18
30	Photoacoustic molecular imaging using single walled carbon nanotubes in living mice 2009,		3
29	High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. <i>Magnetic Resonance in Medicine</i> , 2009 , 62, 1497-509	4.4	35
28	Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. <i>Angewandte Chemie</i> , 2009 , 121, 7804-7808	3.6	31
27	Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angewandte Chemie - International Edition, 2009 , 48, 7668-72	16.4	424

(2007-2009)

26	Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery. <i>Nano Research</i> , 2009 , 2, 85-120	10	1329
25	A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. <i>Nature Nanotechnology</i> , 2009 , 4, 773-80	28.7	886
24	Preparation of carbon nanotube bioconjugates for biomedical applications. <i>Nature Protocols</i> , 2009 , 4, 1372-82	18.8	356
23	PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4783-7	16.4	488
22	Protein microarrays with carbon nanotubes as multicolor Raman labels. <i>Nature Biotechnology</i> , 2008 , 26, 1285-92	44.5	297
21	Carbon nanotubes as photoacoustic molecular imaging agents in living mice. <i>Nature Nanotechnology</i> , 2008 , 3, 557-62	28.7	1065
20	A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. <i>Nature Nanotechnology</i> , 2008 , 3, 216-21	28.7	646
19	PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10876-7	16.4	3039
18	Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11467-76	16.4	579
17	Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. <i>Nano Letters</i> , 2008 , 8, 586-90	11.5	412
16	Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. <i>Molecular Immunology</i> , 2008 , 45, 3797-803	4.3	112
15	Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 1410-5	11.5	931
14	Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13540-1	16.4	233
13	Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. <i>Nano Research</i> , 2008 , 1, 203-212	10	2765
12	Drug delivery with carbon nanotubes for in vivo cancer treatment. <i>Cancer Research</i> , 2008 , 68, 6652-60	10.1	1084
11	siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2023-7	16.4	585
10	siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters. <i>Angewandte Chemie</i> , 2007 , 119, 2069-2073	3.6	40
9	In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. <i>Nature Nanotechnology</i> , 2007 , 2, 47-52	28.7	1270

8	Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. <i>ACS Nano</i> , 2007 , 1, 50-6	16.7	1174
7	Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 577-81	16.4	738
6	Carbon Nanotubes as Intracellular Transporters for Proteins and DNA: An Investigation of the Uptake Mechanism and Pathway. <i>Angewandte Chemie</i> , 2006 , 118, 591-595	3.6	122
5	FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. <i>Nature Materials</i> , 2006 , 5, 971-6	27	753
4	Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12492	- 3 6.4	689
3	Coordination Polymers Integrating Metalloimmunology with Immune Modulation to Elicit Robust Cancer Chemoimmunotherapy. <i>CCS Chemistry</i> ,2629-2642	7.2	3
2	Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. <i>Chemical Research in Chinese Universities</i> ,1	2.2	
1	Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metalorganic nanosonosensitizer. <i>Nano Research</i> ,1	10	О