Zhuang Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3175370/zhuang-liu-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82,813 280 152 475 h-index g-index citations papers 93,618 8.49 498 13.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
475	PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10876-7	16.4	3039
474	Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. <i>Nano Research</i> , 2008 , 1, 203-212	10	2765
473	Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. <i>Nano Letters</i> , 2010 , 10, 3318-23	11.5	1977
472	Functional nanomaterials for phototherapies of cancer. <i>Chemical Reviews</i> , 2014 , 114, 10869-939	68.1	1771
471	Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews, 2012, 41, 1323-49	58.5	1352
470	Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery. <i>Nano Research</i> , 2009 , 2, 85-120	10	1329
469	Nano-graphene in biomedicine: theranostic applications. <i>Chemical Society Reviews</i> , 2013 , 42, 530-47	58.5	1297
468	In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. <i>Nature Nanotechnology</i> , 2007 , 2, 47-52	28.7	1270
467	Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. <i>ACS Nano</i> , 2007 , 1, 50-6	16.7	1174
466	Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research, 2008, 68, 6652-60	10.1	1084
465	Carbon nanotubes as photoacoustic molecular imaging agents in living mice. <i>Nature Nanotechnology</i> , 2008 , 3, 557-62	28.7	1065
464	Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. <i>Nature Communications</i> , 2016 , 7, 13193	17.4	963
463	Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 1410-5	11.5	931
462	Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. <i>Advanced Materials</i> , 2014 , 26, 3433-40	24	919
461	PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. <i>Advanced Materials</i> , 2014 , 26, 1886-93	24	899
460	A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. <i>Nature Nanotechnology</i> , 2009 , 4, 773-80	28.7	886
459	Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. <i>ACS Nano</i> , 2011 , 5, 7000-9	16.7	874

(2011-2012)

458	Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. <i>Advanced Materials</i> , 2012 , 24, 1868-72	24	785
457	Hollow MnO as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. <i>Nature Communications</i> , 2017 , 8, 902	17.4	781
456	FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. <i>Nature Materials</i> , 2006 , 5, 971-6	27	753
455	Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 577-81	16.4	738
454	In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. <i>ACS Nano</i> , 2011 , 5, 516-22	16.7	693
453	Intelligent Albumin-MnO2 Nanoparticles as pH-/H2 O2 -Responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. <i>Advanced Materials</i> , 2016 , 28, 7129-36	24	690
452	Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12492	2-3 ^{6.4}	689
451	Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. <i>Biomaterials</i> , 2011 , 32, 6145-54	15.6	675
450	A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. <i>Nature Nanotechnology</i> , 2008 , 3, 216-21	28.7	646
449	Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. <i>Advanced Materials</i> , 2012 , 24, 1987-93	24	626
448	The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. <i>Biomaterials</i> , 2012 , 33, 2206-14	15.6	625
447	In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. <i>Advanced Materials</i> , 2012 , 24, 5586-92	24	607
446	siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2023-7	16.4	585
445	Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11467-76	16.4	579
444	Graphene in biomedicine: opportunities and challenges. <i>Nanomedicine</i> , 2011 , 6, 317-24	5.6	572
443	Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7860-3	16.4	561
442	Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. <i>Biomaterials</i> , 2011 , 32, 1110-20	15.6	548
441	Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7385-90	16.4	526

440	Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11522-11531	16.4	525
439	In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. <i>Small</i> , 2012 , 8, 281-90	11	507
438	A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. <i>Nano Research</i> , 2012 , 5, 199-212	10	494
437	PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4783-7	16.4	488
436	Graphene based gene transfection. <i>Nanoscale</i> , 2011 , 3, 1252-7	7.7	479
435	Carbon materials for drug delivery & cancer therapy. <i>Materials Today</i> , 2011 , 14, 316-323	21.8	466
434	Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. <i>ACS Nano</i> , 2017 , 11, 4463-4474	16.7	442
433	Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7668-72	16.4	424
432	Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer. <i>Advanced Materials</i> , 2016 , 28, 2716-23	24	416
431	Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. <i>Advanced Materials</i> , 2014 , 26, 8154-6	5 2 4	413
430	Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. <i>Nano Letters</i> , 2008 , 8, 586-90	11.5	412
429	Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. <i>ACS Nano</i> , 2015 , 9, 950-60	16.7	406
428	Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. <i>ACS Nano</i> , 2013 , 7, 6782-95	16.7	404
427	Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. <i>Nano Letters</i> , 2016 , 16, 6145-6153	11.5	400
426	In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3125-9	16.4	398
425	Ultrathin MoS2(1½)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2015 , 5, 2213-2219	13.1	396
424	Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 5490-5498	15.6	391
423	Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. <i>Journal of the American Chemical Society</i> , 2012 , 134, 741	4 ^{1,6} 2 ⁴	391

422	Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10369-72	16.4	389	
421	Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. <i>Advanced Materials</i> , 2014 , 26, 5646-52	24	383	
420	Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. <i>ACS Nano</i> , 2012 , 6, 5605-13	16.7	371	
419	Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. <i>Biomaterials</i> , 2011 , 32, 144-51	15.6	357	
418	Preparation of carbon nanotube bioconjugates for biomedical applications. <i>Nature Protocols</i> , 2009 , 4, 1372-82	18.8	356	
417	Behavior and toxicity of graphene and its functionalized derivatives in biological systems. <i>Small</i> , 2013 , 9, 1492-503	11	353	
416	Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 3867-74	9.5	348	
415	An imagable and photothermal "Abraxane-like" nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. <i>Advanced Materials</i> , 2015 , 27, 903-10	24	340	
414	Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. <i>Advanced Materials</i> , 2017 , 29, 1700996	24	336	
413	Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. <i>Small</i> , 2013 , 9, 1989-97	11	336	
412	Recent advances in the development of organic photothermal nano-agents. <i>Nano Research</i> , 2015 , 8, 340	01354	334	
411	HO-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 5343-5348	11.5	331	
410	Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. <i>Nano Letters</i> , 2010 , 10, 2168-72	11.5	331	
409	Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. <i>Biomaterials</i> , 2012 , 33, 2215-22	15.6	323	
408	In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	318	
407	In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. <i>Biomaterials</i> , 2013 , 34, 2787-95	15.6	317	
406	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. <i>Nanoscale</i> , 2014 , 6, 10505-10	7.7	315	
405	Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy. <i>Advanced Materials</i> , 2017 , 29, 1701429	24	315	

404	Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. <i>Theranostics</i> , 2013 , 3, 317-30	12.1	307
403	Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. <i>Nanoscale</i> , 2013 , 5, 23-37	7.7	303
402	Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. <i>ACS Nano</i> , 2018 , 12, 5121-5129	16.7	303
401	Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. <i>Biomaterials</i> , 2016 , 97, 1-9	15.6	300
400	Protein microarrays with carbon nanotubes as multicolor Raman labels. <i>Nature Biotechnology</i> , 2008 , 26, 1285-92	44.5	297
399	Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14569-14574	16.4	295
398	Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. <i>Advanced Functional Materials</i> , 2013 , 23, 3077-3086	15.6	294
397	Synthesis of Hollow Biomineralized CaCO-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2165-2178	16.4	2 90
396	Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. <i>Advanced Drug Delivery Reviews</i> , 2016 , 105, 228-241	18.5	290
395	Core-Shell MnSe@Bi2 Se3 Fabricated via a Cation Exchange Method as Novel Nanotheranostics for Multimodal Imaging and Synergistic Thermoradiotherapy. <i>Advanced Materials</i> , 2015 , 27, 6110-7	24	289
394	Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. <i>Chemical Society Reviews</i> , 2016 , 45, 6250-6269	58.5	286
393	Catalase-Loaded TaOx Nanoshells as Bio-Nanoreactors Combining High-Z Element and Enzyme Delivery for Enhancing Radiotherapy. <i>Advanced Materials</i> , 2016 , 28, 7143-8	24	283
392	Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. <i>Biomaterials</i> , 2013 , 34, 4786-93	15.6	282
391	Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. <i>ACS Nano</i> , 2017 , 11, 927-937	16.7	281
390	In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. <i>ACS Nano</i> , 2012 , 6, 2361-70	16.7	279
389	Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. <i>Nanoscale</i> , 2014 , 6, 11219-25	7.7	277
388	In vitro and in vivo behaviors of dextran functionalized graphene. Carbon, 2011, 49, 4040-4049	10.4	273
387	Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted Combination Therapy. <i>ACS Nano</i> , 2015 , 9, 5223-33	16.7	269

(2017-2019)

386	Nanoparticle-Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. <i>Advanced Materials</i> , 2019 , 31, e1802228	24	265
385	Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. <i>Biomaterials</i> , 2014 , 35, 2915-23	15.6	265
384	Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. <i>Nano Research</i> , 2010 , 3, 722-732	10	261
383	1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy. <i>Advanced Materials</i> , 2017 , 29, 1703588	24	257
382	Precise nanomedicine for intelligent therapy of cancer. <i>Science China Chemistry</i> , 2018 , 61, 1503-1552	7.9	256
381	Carbon nanotubes for biomedical imaging: the recent advances. <i>Advanced Drug Delivery Reviews</i> , 2013 , 65, 1951-63	18.5	253
380	Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. <i>Biomaterials</i> , 2011 , 32, 9364-73	15.6	251
379	Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. <i>Nature Biomedical Engineering</i> , 2018 , 2, 611-621	19	250
378	Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. <i>Nano Letters</i> , 2018 , 18, 2475-2484	11.5	245
377	Nanoscale Metal-Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Therapy. <i>ACS Nano</i> , 2016 , 10, 2774-81	16.7	244
376	Preparation and functionalization of graphene nanocomposites for biomedical applications. <i>Nature Protocols</i> , 2013 , 8, 2392-403	18.8	242
375	Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13540-1	16.4	233
374	Ultrasmall Oxygen-Deficient Bimetallic Oxide MnWO Nanoparticles for Depletion of Endogenous GSH and Enhanced Sonodynamic Cancer Therapy. <i>Advanced Materials</i> , 2019 , 31, e1900730	24	232
373	Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. <i>ACS Nano</i> , 2014 , 8, 10621-30	16.7	230
372	Bottom-Up Synthesis of Metal-Ion-Doped WS[Nanoflakes for Cancer Theranostics. <i>ACS Nano</i> , 2015 , 9, 11090-101	16.7	226
371	Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy. <i>Advanced Functional Materials</i> , 2014 , 24, 1194-1201	15.6	226
370	Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. <i>Biomaterials</i> , 2015 , 60, 62-71	15.6	226
369	Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. <i>ACS Nano</i> , 2017 , 11, 12696-12712	16.7	223

368	Amplification of Tumor Oxidative Stresses with Liposomal Fenton Catalyst and Glutathione Inhibitor for Enhanced Cancer Chemotherapy and Radiotherapy. <i>Nano Letters</i> , 2019 , 19, 805-815	11.5	217
367	Engineering of Multifunctional Nano-Micelles for Combined Photothermal and Photodynamic Therapy Under the Guidance of Multimodal Imaging. <i>Advanced Functional Materials</i> , 2014 , 24, 6492-650	2 ^{15.6}	216
366	Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy. <i>Nano Letters</i> , 2016 , 16, 2512-21	11.5	216
365	Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2122-6	5 ^{16.4}	212
364	PEGylated Micelle Nanoparticles Encapsulating a Non-Fluorescent Near-Infrared Organic Dye as a Safe and Highly-Effective Photothermal Agent for In Vivo Cancer Therapy. <i>Advanced Functional Materials</i> , 2013 , 23, 5893-5902	15.6	212
363	Photosensitizer-Conjugated Albumin-Polypyrrole Nanoparticles for Imaging-Guided In Vivo Photodynamic/Photothermal Therapy. <i>Small</i> , 2015 , 11, 3932-41	11	209
362	Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. <i>ACS Nano</i> , 2012 , 6, 4694-701	16.7	207
361	Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. <i>Biomaterials</i> , 2013 , 34, 3639-46	15.6	205
360	Mesoporous Silica Coated Single-Walled Carbon Nanotubes as a Multifunctional Light-Responsive Platform for Cancer Combination Therapy. <i>Advanced Functional Materials</i> , 2015 , 25, 384-392	15.6	202
359	A Self-Assembled Albumin-Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. <i>Advanced Materials</i> , 2015 , 27, 6820-7	24	198
358	Polydopamine Nanoparticles as a Versatile Molecular Loading Platform to Enable Imaging-guided Cancer Combination Therapy. <i>Theranostics</i> , 2016 , 6, 1031-42	12.1	196
357	FeSe-Decorated BiSe Nanosheets Fabricated via Cation Exchange for Chelator-Free Cu-labeling and Multimodal Image-Guided Photothermal-Radiation Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 2185-2197	15.6	193
356	Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. <i>Chemistry of Materials</i> , 2017 , 29, 8637-8652	9.6	193
355	2D Nanomaterials for Cancer Theranostic Applications. <i>Advanced Materials</i> , 2020 , 32, e1902333	24	193
354	Conjugated polymers for photothermal therapy of cancer. <i>Polymer Chemistry</i> , 2014 , 5, 1573-1580	4.9	191
353	Imaging-Guided Combined Photothermal and Radiotherapy to Treat Subcutaneous and Metastatic Tumors Using Iodine-131-Doped Copper Sulfide Nanoparticles. <i>Advanced Functional Materials</i> , 2015 , 25, 4689-4699	15.6	184
352	GSH-Depleted PtCu3 Nanocages for Chemodynamic- Enhanced Sonodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 1907954	15.6	184
351	Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. <i>Advanced Materials</i> , 2014 , 26, 4794-802	24	183

(2015-2014)

350	Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. <i>Theranostics</i> , 2014 , 4, 229-39	12.1	183
349	PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. <i>Biomaterials</i> , 2014 , 35, 9844-9852	15.6	176
348	Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. <i>Biomaterials</i> , 2014 , 35, 8206-14	15.6	176
347	Polydopamine as a Biocompatible Multifunctional Nanocarrier for Combined Radioisotope Therapy and Chemotherapy of Cancer. <i>Advanced Functional Materials</i> , 2015 , 25, 7327-7336	15.6	175
346	Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. <i>Small</i> , 2014 , 10, 1544-54	11	174
345	Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication. <i>ACS Nano</i> , 2017 , 11, 9467-9480	16.7	173
344	Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. <i>ACS Nano</i> , 2012 , 6, 4864-75	16.7	173
343	Albumin Carriers for Cancer Theranostics: A Conventional Platform with New Promise. <i>Advanced Materials</i> , 2016 , 28, 10557-10566	24	173
342	Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. <i>Nano Letters</i> , 2012 , 12, 3369-77	11.5	172
341	Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy. <i>Angewandte Chemie</i> , 2011 , 123, 7523-7528	3.6	172
340	In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. <i>Nanomedicine</i> , 2011 , 6, 1327-40	5.6	170
339	Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. <i>Nano Today</i> , 2018 , 21, 55-73	17.9	169
338	An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. <i>Biomaterials</i> , 2014 , 35, 9355-62	15.6	168
337	Two-dimensional TiShanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. <i>Nanoscale</i> , 2015 , 7, 6380-7	7.7	165
336	CaCO nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. <i>Biomaterials</i> , 2016 , 110, 60-70	15.6	165
335	PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. <i>Biomaterials</i> , 2013 , 34, 9160-70	15.6	163
334	Multicolor In Vivo Imaging of Upconversion Nanoparticles with Emissions Tuned by Luminescence Resonance Energy Transfer. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2686-2692	3.8	161
333	Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. <i>ACS Nano</i> , 2015 , 9, 6401-11	16.7	160

332	A Hypoxia-Responsive Albumin-Based Nanosystem for Deep Tumor Penetration and Excellent Therapeutic Efficacy. <i>Advanced Materials</i> , 2019 , 31, e1901513	24	159
331	Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. <i>Biomaterials</i> , 2015 , 66, 21-8	15.6	158
330	Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of HO and Catalase for Enhanced Radio-Immunotherapy of Cancer. <i>Nano Letters</i> , 2018 , 18, 6360-6368	11.5	158
329	Light-Triggered In Situ Gelation to Enable Robust Photodynamic-Immunotherapy by Repeated Stimulations. <i>Advanced Materials</i> , 2019 , 31, e1900927	24	157
328	Nanoscale-Coordination-Polymer-Shelled Manganese Dioxide Composite Nanoparticles: A Multistage Redox/pH/H2O2-Responsive Cancer Theranostic Nanoplatform. <i>Advanced Functional Materials</i> , 2017 , 27, 1605926	15.6	156
327	TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. <i>Biomaterials</i> , 2017 , 112, 257-263	15.6	156
326	Nanoscale theranostics for physical stimulus-responsive cancer therapies. <i>Biomaterials</i> , 2015 , 73, 214-3	015.6	154
325	Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 8542-8	9.5	153
324	Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. <i>Biomaterials</i> , 2017 , 138, 13-21	15.6	152
323	Ultrafine Titanium Monoxide (TiO) Nanorods for Enhanced Sonodynamic Therapy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6527-6537	16.4	151
322	Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. <i>Biomaterials</i> , 2018 , 162, 123-131	15.6	151
321	Multifunctional Two-Dimensional Core-Shell MXene@Gold Nanocomposites for Enhanced Photo-Radio Combined Therapy in the Second Biological Window. <i>ACS Nano</i> , 2019 , 13, 284-294	16.7	148
320	In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS (M = Mo, W, Ti) Nanosheets. <i>Advanced Science</i> , 2017 , 4, 1600160	13.6	147
319	Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. <i>Biomaterials</i> , 2016 , 98, 23-30	15.6	147
318	The acidic tumor microenvironment: a target for smart cancer nano-theranostics. <i>National Science Review</i> , 2018 , 5, 269-286	10.8	144
317	Recent progress of chemodynamic therapy-induced combination cancer therapy. <i>Nano Today</i> , 2020 , 35, 100946	17.9	140
316	FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. <i>Biomaterials</i> , 2015 , 38, 1-9	15.6	138
315	Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution in tumor-bearing mice. <i>Biomacromolecules</i> , 2011 , 12, 1460-7	6.9	138

(2006-2013)

314	Near-Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy. <i>Advanced Functional Materials</i> , 2013 , 23, 6059-6067	15.6	135
313	Remotely Controlled Red Blood Cell Carriers for Cancer Targeting and Near-Infrared Light-Triggered Drug Release in Combined Photothermal@hemotherapy. <i>Advanced Functional Materials</i> , 2015 , 25, 2386-2394	15.6	133
312	Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1261-71	10.1	132
311	Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. <i>Science Advances</i> , 2019 , 5, eaaw6870	14.3	131
310	Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. <i>Biomaterials</i> , 2013 , 34, 3002-9	15.6	131
309	Single-walled carbon nanotubes in biomedical imaging. <i>Journal of Materials Chemistry</i> , 2011 , 21, 586-598	8	128
308	Covalent Organic Polymers Based on Fluorinated Porphyrin as Oxygen Nanoshuttles for Tumor Hypoxia Relief and Enhanced Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1804901	15.6	127
307	Cisplatin-Prodrug-Constructed Liposomes as a Versatile Theranostic Nanoplatform for Bimodal Imaging Guided Combination Cancer Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 2207-2217	15.6	126
306	Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. <i>Journal of Controlled Release</i> , 2017 , 263, 79-89	11.7	126
305	G-Quadruplex-Based Nanoscale Coordination Polymers to Modulate Tumor Hypoxia and Achieve Nuclear-Targeted Drug Delivery for Enhanced Photodynamic Therapy. <i>Nano Letters</i> , 2018 , 18, 6867-687	5 ^{11.5}	126
304	Multifunctional Upconversion Nanoparticles for Dual-Modal Imaging-Guided Stem Cell Therapy under Remote Magnetic Control. <i>Advanced Functional Materials</i> , 2013 , 23, 272-280	15.6	125
303	Theranostic 2D ultrathin MnO nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. <i>Biomaterials</i> , 2018 , 155, 54-63	15.6	125
302	A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. <i>Nature Nanotechnology</i> , 2020 , 15, 1043-1052	28.7	124
301	CoreBhell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. <i>Nano Research</i> , 2016 , 9, 3267-3278	10	124
300	Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. <i>Coordination Chemistry Reviews</i> , 2016 , 320-321, 100-117	23.2	123
299	Hollow Cu2Se Nanozymes for Tumor Photothermal-Catalytic Therapy. <i>Chemistry of Materials</i> , 2019 , 31, 6174-6186	9.6	122
298	Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. <i>Nanoscale</i> , 2014 , 6, 9198-205	7.7	122
297	Carbon Nanotubes as Intracellular Transporters for Proteins and DNA: An Investigation of the Uptake Mechanism and Pathway. <i>Angewandte Chemie</i> , 2006 , 118, 591-595	3.6	122

296	Light-Responsive, Singlet-Oxygen-Triggered On-Demand Drug Release from Photosensitizer-Doped Mesoporous Silica Nanorods for Cancer Combination Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 4722-4732	15.6	122
295	Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. <i>Biomaterials</i> , 2012 , 33, 4872-81	15.6	121
294	Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. <i>Nano Today</i> , 2020 , 32, 100851	17.9	118
293	Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. <i>Biomaterials</i> , 2018 , 181, 310-317	15.6	118
292	Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. <i>Chemical Society Reviews</i> , 2019 , 48, 5506-5526	58.5	118
291	Multiplexed Five-Color Molecular Imaging of Cancer Cells and Tumor Tissues with Carbon Nanotube Raman Tags in the Near-Infrared. <i>Nano Research</i> , 2010 , 3, 222-233	10	118
290	Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles. <i>Theranostics</i> , 2014 , 4, 134-41	12.1	117
289	Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. <i>Nano Letters</i> , 2018 , 18, 182-189	11.5	117
288	2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. <i>Theranostics</i> , 2018 , 8, 1648-1664	12.1	116
287	Synthesis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. <i>Nanoscale</i> , 2014 , 6, 199-202	7.7	115
286	Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune Checkpoint Blockade for Systemic Antitumor Therapy. <i>Nano Letters</i> , 2019 , 19, 4287-4296	11.5	113
285	Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. <i>Molecular Immunology</i> , 2008 , 45, 3797-803	4.3	112
284	Photoacoustic Imaging Guided Near-Infrared Photothermal Therapy Using Highly Water-Dispersible Single-Walled Carbon Nanohorns as Theranostic Agents. <i>Advanced Functional Materials</i> , 2014 , 24, 6621-	6628	111
283	Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. <i>Nano Research</i> , 2016 , 9, 3003-3017	10	109
282	ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. <i>Biomaterials</i> , 2020 , 258, 120286	15.6	108
281	Protamine Functionalized Single-Walled Carbon Nanotubes for Stem Cell Labeling and In Vivo Raman/Magnetic Resonance/Photoacoustic Triple-Modal Imaging. <i>Advanced Functional Materials</i> , 2012 , 22, 2363-2375	15.6	106
2 80	Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. Biomacromolecules, 2013, 14, 2411-9	6.9	106
279	Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. <i>Nano Research</i> , 2017 , 10, 1200-1212	10	105

278	Nano-carbons as theranostics. <i>Theranostics</i> , 2012 , 2, 235-7	12.1	104
277	Redox-Sensitive Nanoscale Coordination Polymers for Drug Delivery and Cancer Theranostics. <i>ACS Applied Materials & Delivery and Cancer Theranostics are selected as a selected and Cancer Theranostics and Cancer Theranostics and Cancer Theranostics are selected as a selected as a selected as a selected and Cancer Theranostics are selected as a selecte</i>	9.5	103
276	Hyaluronidase with pH-responsive Dextran Modification as an Adjuvant Nanomedicine for Enhanced Photodynamic-Immunotherapy of Cancer. <i>Advanced Functional Materials</i> , 2019 , 29, 1902440	15.6	103
275	Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. <i>Nanoscale</i> , 2018 , 10, 6981-6991	7.7	103
274	Bimetallic Oxide MnMoO Nanorods for in Vivo Photoacoustic Imaging of GSH and Tumor-Specific Photothermal Therapy. <i>Nano Letters</i> , 2018 , 18, 6037-6044	11.5	103
273	Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. <i>ACS Applied Materials & Silica Nanoparticles</i> , 2016, 8, 26630-26637	9.5	102
272	Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. <i>Angewandte Chemie</i> , 2016 , 128, 14789-14794	3.6	99
271	Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. <i>Nano Research</i> , 2015 , 8, 751-764	10	98
270	Synthesis of CaCO3-Based Nanomedicine for Enhanced Sonodynamic Therapy via Amplification of Tumor Oxidative Stress. <i>CheM</i> , 2020 , 6, 1391-1407	16.2	98
269	Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection. <i>Biomaterials</i> , 2017 , 127, 13-24	15.6	97
268	Red Blood Cells as Smart Delivery Systems. <i>Bioconjugate Chemistry</i> , 2018 , 29, 852-860	6.3	96
267	Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27324-30	9.5	95
266	Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12991-12996	16.4	95
265	The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 601-12	28	94
264	In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. <i>Biomaterials</i> , 2016 , 104, 361-71	15.6	93
263	Smart Injectable Hydrogels for Cancer Immunotherapy. <i>Advanced Functional Materials</i> , 2020 , 30, 19027	8 5 5.6	90
262	Renal-Clearable PEGylated Porphyrin Nanoparticles for Image-guided Photodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1702928	15.6	90
261	Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 11575-82	9.5	89

260	Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. <i>Biomaterials</i> , 2015 , 54, 55-6.	2 ^{15.6}	89
259	2D MoS Nanostructures for Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701158	10.1	89
258	Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. <i>Biomaterials</i> , 2018 , 181, 81-91	15.6	89
257	Magnetic Targeting Enhanced Theranostic Strategy Based on Multimodal Imaging for Selective Ablation of Cancer. <i>Advanced Functional Materials</i> , 2014 , 24, 2312-2321	15.6	89
256	Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. <i>Biomaterials</i> , 2013 , 34, 8960-7	15.6	88
255	Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy. <i>Theranostics</i> , 2016 , 6, 1833-43	12.1	87
254	Manganese Dioxide Coated WS @Fe O /sSiO Nanocomposites for pH-Responsive MR Imaging and Oxygen-Elevated Synergetic Therapy. <i>Small</i> , 2018 , 14, 1702664	11	87
253	Reactive Oxygen Species Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/Chemodynamic Therapies. <i>Advanced Functional Materials</i> , 2019 , 29, 1905013	15.6	82
252	Bottom-Up Preparation of Uniform Ultrathin Rhenium Disulfide Nanosheets for Image-Guided Photothermal Radiotherapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1700250	15.6	80
251	Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. <i>Biomaterials</i> , 2017 , 146, 40-48	15.6	80
250	Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1370-7	9.5	80
249	Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. <i>Biomaterials</i> , 2019 , 207, 1-9	15.6	79
248	Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. <i>Biomaterials</i> , 2015 , 57, 84-92	15.6	78
247	Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. <i>ACS Nano</i> , 2020 , 14, 1586-1599	16.7	77
246	Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of Cu and multimodal imaging-guided photothermal therapy. <i>Nanoscale</i> , 2017 , 9, 12609-12617	7.7	77
245	Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. Journal of Materials Chemistry, 2011 , 21, 5786		77
244	Preparation of TiH nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy. <i>Nature Communications</i> , 2020 , 11, 3712	17.4	77
243	Sub-100 nm hollow Au-Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy. <i>Biomaterials</i> , 2014 , 35, 4099-107	15.6	74

242	J-aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915-nm light. <i>Small</i> , 2014 , 10, 4362-70	11	74
241	Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 11, 18133-18144	9.5	72
240	Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. <i>ACS Nano</i> , 2018 , 12, 9412-9422	16.7	72
239	All-in-One Theranostic Nanoplatform Based on Hollow TaOx for Chelator-Free Labeling Imaging, Drug Delivery, and Synergistically Enhanced Radiotherapy. <i>Advanced Functional Materials</i> , 2016 , 26, 824	3- 8254	1 ⁷²
238	Calcium Bisphosphonate Nanoparticles with Chelator-Free Radiolabeling to Deplete Tumor-Associated Macrophages for Enhanced Cancer Radioisotope Therapy. <i>ACS Nano</i> , 2018 , 12, 11541	-1675 -19755	1 ⁷¹
237	Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. <i>Advanced Materials</i> , 2019 , 31, e1806803	24	70
236	Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. <i>Science Advances</i> , 2020 , 6, eaaz4204	14.3	70
235	pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined Photodynamic Chemotherapy of Cancer. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 14475-14482	9.5	70
234	Photothermal therapy by using titanium oxide nanoparticles. <i>Nano Research</i> , 2016 , 9, 1236-1243	10	70
233	In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 3179-3183	3.6	70
232	Tumor-pH-Responsive Dissociable Albumin-Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. <i>Small</i> , 2018 , 14, e1803262	11	70
231	MoS2-based nanoprobes for detection of silver ions in aqueous solutions and bacteria. <i>ACS Applied Materials & ACS Applied & ACS Appli</i>	9.5	69
230	Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1802540	15.6	69
229	Ultrabright and ultrastable near-infrared dye nanoparticles for in vitro and in vivo bioimaging. <i>Biomaterials</i> , 2012 , 33, 7803-9	15.6	69
228	Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. <i>Biomaterials</i> , 2020 , 228, 119568	15.6	69
227	cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. <i>Journal of Controlled Release</i> , 2014 , 195, 63-71	11.7	67
226	Innovative Strategien f⊞die photodynamische Therapie hypoxischer Tumore. <i>Angewandte Chemie</i> , 2018 , 130, 11694-11704	3.6	67
225	Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for Synergistic Combined Chemo-radioisotope Therapy of Cancer. <i>Theranostics</i> , 2017 , 7, 614-623	12.1	66

Upconversion Composite Nanoparticles for Tumor Hypoxia Modulation and Enhanced Near-Infrared-Triggered Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 15494 15503 66 224 Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic 223 16.7 66 Cancer Therapy. ACS Nano, 2020, 14, 15119-15130 Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic 222 65 7.7 photothermal/photodynamic therapy. *Nanoscale*, **2016**, 8, 15323-39 Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment 221 64 15.6 for enhanced cancer nanomedicine and immunotherapy. Biomaterials, 2017, 148, 69-80 Fluorinated Polyethylenimine to Enable Transmucosal Delivery of Photosensitizer-Conjugated Catalase for Photodynamic Therapy of Orthotopic Bladder Tumors Postintravesical Instillation. 220 15.6 64 Advanced Functional Materials, 2019, 29, 1901932 Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and 219 64 9.5 serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced gene delivery. ACS Applied Materials & Discrete Representation of the Serum-enhanced generation of the Serum-en 2D magnetic titanium carbide MXene for cancer theranostics. Journal of Materials Chemistry B, 218 63 7.3 **2018**, 6, 3541-3548 Reassembly of Zr-Labeled Cancer Cell Membranes into Multicompartment Membrane-Derived 217 63 24 Liposomes for PET-Trackable Tumor-Targeted Theranostics. Advanced Materials, 2018, 30, e1704934 Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of 216 62 7.7 cellular immunity. Nanoscale, 2016, 8, 3785-95 Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free Cu-Labeling and 16.7 62 215 Imaging-Guided Enhanced Radiotherapy of Cancer. ACS Nano, 2017, 11, 9103-9111 PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and 6 214 62 in vivo toxicity studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1077-88 VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vio. 15.6 61 213 *Biomaterials*, **2015**, 39, 39-46 Albumin-templated biomineralizing growth of composite nanoparticles as smart nano-theranostics 60 212 7.7 for enhanced radiotherapy of tumors. Nanoscale, 2017, 9, 14826-14835 Nanoscale covalent organic polymers as a biodegradable nanomedicine for 10 60 211 chemotherapy-enhanced photodynamic therapy of cancer. Nano Research, 2018, 11, 3244-3257 Albumin-Templated Manganese Dioxide Nanoparticles for Enhanced Radioisotope Therapy. Small, 210 11 59 2017, 13, 1700640 Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified 209 59 nanostructures. Nano Research, 2016, 9, 139-148 Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective 208 10 59 isolation and sensitive detection of circulating tumor cells. Nano Research, 2014, 7, 1327-1336 One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers 207 15.6 59 for improved cancer therapy. Biomaterials, 2018, 156, 121-133

(2013-2020)

206	Biodegradable Nanoscale Coordination Polymers for Targeted Tumor Combination Therapy with Oxidative Stress Amplification. <i>Advanced Functional Materials</i> , 2020 , 30, 1908865	15.6	58
205	Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. <i>Biomaterials Science</i> , 2017 , 5, 331-340	7.4	56
204	Biomimetic Copper Sulfide for Chemo-Radiotherapy: Enhanced Uptake and Reduced Efflux of Nanoparticles for Tumor Cells under Ionizing Radiation. <i>Advanced Functional Materials</i> , 2018 , 28, 17051	6 ¹ 1 ^{5.6}	55
203	NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. <i>Nano Research</i> , 2018 , 11, 5657-5669	10	55
202	Inorganic nanomaterials with rapid clearance for biomedical applications. <i>Chemical Society Reviews</i> , 2021 , 50, 8669-8742	58.5	55
201	Carrier-free, functionalized drug nanoparticles for targeted drug delivery. <i>Chemical Communications</i> , 2012 , 48, 8120-2	5.8	54
200	Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. <i>Science Advances</i> , 2020 , 6, eaba3546	14.3	54
199	Au@MnS@ZnS Core/Shell/Shell Nanoparticles for Magnetic Resonance Imaging and Enhanced Cancer Radiation Therapy. <i>ACS Applied Materials & District Resonance</i> , 2016 , 8, 9557-64	9.5	54
198	Chelator-Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2889-2892	16.4	53
197	Calming Cytokine Storm in Pneumonia by Targeted Delivery of TPCA-1 Using Platelet-Derived Extracellular Vesicles. <i>Matter</i> , 2020 , 3, 287-301	12.7	53
196	Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. <i>Nanoscale</i> , 2016 , 8, 12683-92	7.7	50
195	Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. <i>Nano Research</i> , 2019 , 12, 1307-1312	10	50
194	Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. <i>Small</i> , 2021 , 17, e2007486	11	49
193	Albumin-Assisted Synthesis of Ultrasmall FeS Nanodots for Imaging-Guided Photothermal Enhanced Photodynamic Therapy. <i>ACS Applied Materials & Enhanced Photodynamic Therapy</i> . <i>ACS Applied Materials & Enhanced Photodynamic Therapy</i> .	9.5	49
192	Drug-Loaded Mesoporous Tantalum Oxide Nanoparticles for Enhanced Synergetic Chemoradiotherapy with Reduced Systemic Toxicity. <i>Small</i> , 2017 , 13, 1602869	11	48
191	pH-Sensitive Dissociable Nanoscale Coordination Polymers with Drug Loading for Synergistically Enhanced Chemoradiotherapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1703832	15.6	48
190	Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. <i>Nanoscale</i> , 2015 , 7, 16399-416	7.7	46
189	High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model. <i>Nano Today</i> , 2013 , 8, 126-126	17.9	46

188	Antitumor Agents Based on Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16763-16776	16.4	46
187	Rhenium-188 Labeled Tungsten Disulfide Nanoflakes for Self-Sensitized, Near-Infrared Enhanced Radioisotope Therapy. <i>Small</i> , 2016 , 12, 3967-75	11	45
186	Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. <i>Biomaterials</i> , 2016 , 100, 101-9	15.6	45
185	Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. <i>Nanoscale</i> , 2014 , 6, 14903-10	7.7	45
184	Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals. <i>Angewandte Chemie</i> , 2011 , 123, 10553-10556	3.6	44
183	Cerenkov Luminescence-Induced NO Release from 32P-Labeled ZnFe(CN)5NO Nanosheets to Enhance Radioisotope-Immunotherapy. <i>Matter</i> , 2019 , 1, 1061-1076	12.7	43
182	Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. <i>ACS Nano</i> , 2019 , 13, 13127-13135	16.7	43
181	ATP-Responsive Smart Hydrogel Releasing Immune Adjuvant Synchronized with Repeated Chemotherapy or Radiotherapy to Boost Antitumor Immunity. <i>Advanced Materials</i> , 2021 , 33, e2007910	24	43
180	Bioinspired tumor-homing nanosystem for precise cancer therapy via reprogramming of tumor-associated macrophages. <i>NPG Asia Materials</i> , 2018 , 10, 1002-1015	10.3	43
179	Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment. <i>Coordination Chemistry Reviews</i> , 2019 , 398, 113009	23.2	42
178	Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation exchange for multimodal imaging and synergistic thermo-radiotherapy. <i>NPG Asia Materials</i> , 2017 , 9, e344-e344	10.3	41
177	Photosensitizer Decorated Red Blood Cells as an Ultrasensitive Light-Responsive Drug Delivery System. <i>ACS Applied Materials & Delivery System. ACS Applied Materials & Delivery System.</i> 2017, 9, 5855-5863	9.5	41
176	Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. <i>Carbon</i> , 2012 , 50, 3008-3014	10.4	41
175	Photosensitizer-Modified MnO Nanoparticles to Enhance Photodynamic Treatment of Abscesses and Boost Immune Protection for Treated Mice. <i>Small</i> , 2020 , 16, e2000589	11	40
174	Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease. <i>ACS Applied Materials & Disease</i> , <i>Interfaces</i> , 2016 , 8, 17955-63	9.5	40
173	Highly Effective Radioisotope Cancer Therapy with a Non-Therapeutic Isotope Delivered and Sensitized by Nanoscale Coordination Polymers. <i>ACS Nano</i> , 2018 , 12, 7519-7528	16.7	40
172	siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters. <i>Angewandte Chemie</i> , 2007 , 119, 2069-2073	3.6	40
171	Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. <i>Nanoscale</i> , 2015 , 7, 20757-68	7.7	39

(2017-2017)

170	Surface-Engineering of Red Blood Cells as Artificial Antigen Presenting Cells Promising for Cancer Immunotherapy. <i>Small</i> , 2017 , 13, 1701864	11	39	
169	Readout-segmented echo-planar imaging in the evaluation of sinonasal lesions: A comprehensive comparison of image quality in single-shot echo-planar imaging. <i>Magnetic Resonance Imaging</i> , 2016 , 34, 166-72	3.3	38	
168	Inorganic nanomaterials for tumor angiogenesis imaging. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2010 , 37 Suppl 1, S147-63	8.8	38	
167	Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. <i>Biomaterials</i> , 2019 , 197, 368-379	15.6	37	
166	Fluorinated Polymer Mediated Transmucosal Peptide Delivery for Intravesical Instillation Therapy of Bladder Cancer. <i>Small</i> , 2019 , 15, e1900936	11	37	
165	Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. <i>Biomaterials</i> , 2020 , 255, 120202	15.6	37	
164	Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. <i>Nanoscale</i> , 2017 , 9, 4826-4834	7.7	36	
163	In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. <i>Biomaterials</i> , 2019 , 224, 119490	15.6	36	
162	Bimetallic Oxide FeWOX Nanosheets as Multifunctional Cascade Bioreactors for Tumor Microenvironment-Modulation and Enhanced Multimodal Cancer Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 2002753	15.6	36	
161	Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor Microenvironment Modulation and Enhanced Photodynamic Nanomedicine. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS </i>	9.5	36	
160	Surfactant-Stripped Micelles of Near Infrared Dye and Paclitaxel for Photoacoustic Imaging Guided Photothermal-Chemotherapy. <i>Small</i> , 2018 , 14, e1802991	11	36	
159	In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4726-4732	7-3	35	
158	High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. <i>Magnetic Resonance in Medicine</i> , 2009 , 62, 1497-509	4.4	35	
157	Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. <i>Journal of Controlled Release</i> , 2019 , 304, 233-241	11.7	34	
156	Two-dimensional silicene composite nanosheets enable exogenous/endogenous-responsive and synergistic hyperthermia-augmented catalytic tumor theranostics. <i>Biomaterials</i> , 2020 , 256, 120206	15.6	34	
155	Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. <i>Biomaterials</i> , 2019 , 219, 119374	15.6	34	
154	Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPS34 complex. <i>International Journal of Nanomedicine</i> , 2015 , 10, 207-16	7.3	33	
153	Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. <i>Angewandte Chemie</i> , 2017 , 129, 13171-13176	3.6	33	

152	In Situ Formed Fibrin Scaffold with Cyclophosphamide to Synergize with Immune Checkpoint Blockade for Inhibition of Cancer Recurrence after Surgery. <i>Advanced Functional Materials</i> , 2020 , 30, 1906922	15.6	33
151	An implantable blood clot-based immune niche for enhanced cancer vaccination. <i>Science Advances</i> , 2020 , 6,	14.3	33
150	Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer. <i>Nanoscale</i> , 2018 , 10, 13976-13985	7.7	33
149	Photoactivated H Nanogenerator for Enhanced Chemotherapy of Bladder Cancer. <i>ACS Nano</i> , 2020 , 14, 8135-8148	16.7	32
148	Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. <i>Nano Today</i> , 2021 , 39, 101170	17.9	32
147	Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy. <i>Biomaterials Science</i> , 2017 , 5, 1828-1835	7.4	31
146	Patterned substrates of nano-graphene oxide mediating highly localized and efficient gene delivery. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 5900-7	9.5	31
145	Dual-Polymer-Functionalized Nanoscale Graphene Oxide as a Highly Effective Gene Transfection Agent for Insect Cells with Cell-Type-Dependent Cellular Uptake Mechanisms. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 794-803	3.1	31
144	Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. <i>Angewandte Chemie</i> , 2009 , 121, 7804-7808	3.6	31
143	Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced Sonodynamic/Chemodynamic Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 52370-52382	9.5	31
142	Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local Administration. <i>Nano Letters</i> , 2020 , 20, 6763-6773	11.5	31
141	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14842-14853	16.4	30
140	Core-shell TaOx@MnO nanoparticles as a nano-radiosensitizer for effective cancer radiotherapy. Journal of Materials Chemistry B, 2018 , 6, 2250-2257	7.3	30
139	Graphene Oxide Selectively Enhances Thermostability of Trypsin. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 12270-7	9.5	30
138	Carrier-free, water dispersible and highly luminescent dye nanoparticles for targeted cell imaging. <i>Nanoscale</i> , 2012 , 4, 5373-7	7.7	30
137	Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2786-2800	7.3	29
136	Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. <i>Biomaterials</i> , 2020 , 255, 120190	15.6	29
135	Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective hierarchical-targeting molecular medicine for photodynamic therapy. <i>Biomaterials</i> , 2020 , 246, 119971	15.6	29

134	Ultrasound-Responsive Conversion of Microbubbles to Nanoparticles to Enable Background-Free in Vivo Photoacoustic Imaging. <i>Nano Letters</i> , 2019 , 19, 8109-8117	11.5	29	
133	Magnetic Field-Enhanced Photothermal Ablation of Tumor Sentinel Lymph Nodes to Inhibit Cancer Metastasis. <i>Small</i> , 2015 , 11, 4856-63	11	29	
132	V-TiO2 nanospindles with regulating tumor microenvironment performance for enhanced sonodynamic cancer therapy. <i>Applied Physics Reviews</i> , 2020 , 7, 041411	17.3	29	
131	Oxygen-Deficient Bimetallic Oxide FeWO Nanosheets as Peroxidase-Like Nanozyme for Sensing Cancer via Photoacoustic Imaging. <i>Small</i> , 2020 , 16, e2003496	11	29	
130	Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. <i>Nano Research</i> , 2021 , 14, 212-221	10	29	
129	Bioorthogonal Coordination Polymer Nanoparticles with Aggregation-Induced Emission for Deep Tumor-Penetrating Radio- and Radiodynamic Therapy. <i>Advanced Materials</i> , 2021 , 33, e2007888	24	29	
128	The enhanced permeability and retention effect based nanomedicine at the site of injury. <i>Nano Research</i> , 2020 , 13, 564-569	10	28	
127	Nanoparticle-Mediated Delivery of Inhaled Immunotherapeutics for Treating Lung Metastasis. <i>Advanced Materials</i> , 2021 , 33, e2007557	24	28	
126	Specific detection and simultaneously localized photothermal treatment of cancer cells using layer-by-layer assembled multifunctional nanoparticles. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 6443-52	9.5	27	
125	Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission Tomography Imaging. <i>ACS Nano</i> , 2017 , 11, 12193-12201	16.7	27	
124	Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy. <i>Applied Materials Today</i> , 2020 , 18, 100464	6.6	27	
123	Facile Preparation of Multifunctional WS /WO Nanodots for Chelator-Free Zr-Labeling and In Vivo PET Imaging. <i>Small</i> , 2016 , 12, 5750-5758	11	27	
122	Supramolecular self-assembly enhanced europium(III) luminescence under visible light. <i>Soft Matter</i> , 2014 , 10, 4686-93	3.6	26	
121	Stem Cell Labeling and Tracking with Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 1006-1017	3.1	26	
120	Advances in imaging strategies for in vivo tracking of exosomes. <i>Wiley Interdisciplinary Reviews:</i> Nanomedicine and Nanobiotechnology, 2020 , 12, e1594	9.2	26	
119	Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. <i>Biomaterials</i> , 2016 , 100, 91-100	15.6	26	
118	A versatile Fe3O4 based platform via iron-catalyzed AGET ATRP: towards various multifunctional nanomaterials. <i>Polymer Chemistry</i> , 2014 , 5, 638-645	4.9	25	
117	Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging. Journal of Materials Chemistry B, 2013 , 1, 3144-3151	7.3	24	

116	fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. <i>Quantitative Imaging in Medicine and Surgery</i> , 2018 , 8, 151-160	3.6	24
115	NIR organic dyes based on phenazine-cyanine for photoacoustic imaging-guided photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7420-7426	7-3	24
114	Label-Free, Quantitative Imaging of MoS -Nanosheets in Live Cells with Simultaneous Stimulated Raman Scattering and Transient Absorption Microscopy. <i>Advanced Biology</i> , 2017 , 1, e1700013	3.5	23
113	Platinum nanoworms for imaging-guided combined cancer therapy in the second near-infrared window. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 5069-5079	7-3	23
112	Carbon nanotubes in biology and medicine: An overview. <i>Science Bulletin</i> , 2012 , 57, 167-180		22
111	Facile fabrication of biocompatible and tunable multifunctional nanomaterials via iron-mediated atom transfer radical polymerization with activators generated by electron transfer. <i>ACS Applied Materials & Description of the Materials and Section 1</i> (2013), 5, 9663-9	9.5	22
110	In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes. <i>Current Drug Metabolism</i> , 2012 , 13, 1057-67	3.5	22
109	Ultrasmall Pyropheophorbidea Nanodots for Nearinfrared Fluorescence/Photoacoustic Imaging-guided Photodynamic Therapy. <i>Theranostics</i> , 2020 , 10, 62-73	12.1	22
108	Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation. <i>Biomaterials</i> , 2021 , 268, 120550	15.6	22
107	Postoperative executive function in adult moyamoya disease: a preliminary study of its functional anatomy and behavioral correlates. <i>Journal of Neurosurgery</i> , 2017 , 126, 527-536	3.2	21
106	A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma. <i>International Journal of Nanomedicine</i> , 2018 , 13, 4433-4443	7.3	21
105	Protein-Engineered Biomaterials for Cancer Theranostics. <i>Advanced Healthcare Materials</i> , 2018 , 7, e180	0091.3	21
104	Bifunctional nanoparticles with magnetism and NIR fluorescence: controlled synthesis from combination of AGET ATRP and @lick@eaction. <i>Nanotechnology</i> , 2014 , 25, 045602	3.4	20
103	The advantage of reversible coordination polymers in producing visible light sensitized Eu(III) emissions over EDTA via excluding water from the coordination sphere. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16641-7	3.6	20
102	Take Immune Cells Back on Track: Glycopolymer-Engineered Tumor Cells for Triggering Immune Response. <i>ACS Macro Letters</i> , 2019 , 8, 337-344	6.6	19
101	Functionalized graphene oxide in microbial engineering: An effective stimulator for bacterial growth <i>Carbon</i> , 2016 , 103, 172-180	10.4	19
100	Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. <i>Nano Research</i> , 2020 , 13, 2209-2215	10	19
99	Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. <i>Biomaterials</i> , 2021 , 269, 120455	15.6	19

(2022-2020)

98	Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. <i>Nanoscale Horizons</i> , 2020 , 5, 857-868	10.8	18	
97	Nanoparticle-Embedded Electrospun Fiber-Covered Stent to Assist Intraluminal Photodynamic Treatment of Oesophageal Cancer. <i>Small</i> , 2019 , 15, e1904979	11	18	
96	Magnetic PEGylated Pt3Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study. <i>Nanoscale</i> , 2013 , 5, 12464-73	7.7	18	
95	Carbon nanotubes for in vivo cancer nanotechnology. <i>Science China Chemistry</i> , 2010 , 53, 2217-2225	7.9	18	
94	Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant. <i>Nanoscale</i> , 2015 , 7, 19282-92	7.7	17	
93	Injectable Nonmagnetic Liquid Metal for Eddy-Thermal Ablation of Tumors under Alternating Magnetic Field. <i>Small Methods</i> , 2020 , 4, 2000147	12.8	17	
92	Intelligent protein-coated bismuth sulfide and manganese oxide nanocomposites obtained by biomineralization for multimodal imaging-guided enhanced tumor therapy. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5170-5181	7.3	17	
91	Hybrid Protein Nano-Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodine-131 Delivery for Enhanced Radionuclide Therapy. <i>Small</i> , 2019 , 15, e1903628	11	17	
90	Metallic oxide nanocrystals with near-infrared plasmon resonance for efficient, stable and biocompatible photothermal cancer therapy. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 7393-7402	7.3	17	
89	High-yield synthesis of gold bipyramids for in vivo CT imaging and photothermal cancer therapy with enhanced thermal stability. <i>Chemical Engineering Journal</i> , 2019 , 378, 122025	14.7	16	
88	Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. <i>Nano Research</i> , 2020 , 13, 3057-3067	10	16	
87	Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 1228-1237	11.5	16	
86	Imaging: PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy (Adv. Mater. 12/2014). <i>Advanced Materials</i> , 2014 , 26, 1794-1794	24	15	
85	Aptamer-Based Logic Computing Reaction on Living Cells to Enable Non-Antibody Immune Checkpoint Blockade Therapy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8391-8401	16.4	15	
84	Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. <i>Nature Communications</i> , 2021 , 12, 4299	17.4	15	
83	CaCO-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy. <i>Nano-Micro Letters</i> , 2020 , 13, 29	19.5	15	
82	Mechanically active adhesive and immune regulative dressings for wound closure. <i>Matter</i> , 2021 , 4, 2985	- 3 20 9 0	15	
81	Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy. <i>Bioactive Materials</i> , 2022 , 8, 409-419	16.7	15	

80	Renal Clearable Ru-based Coordination Polymer Nanodots for Photoacoustic Imaging Guided Cancer Therapy. <i>Theranostics</i> , 2019 , 9, 8266-8276	12.1	14
79	Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform. <i>Nanotechnology</i> , 2013 , 24, 015103	3.4	14
78	Recent advances in functional nanomaterials for X-ray triggered cancer therapy. <i>Progress in Natural Science: Materials International</i> , 2020 , 30, 567-576	3.6	14
77	Multifunctional MnO nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021 , 13, e1720	9.2	14
76	Novel Multifunctional Stimuli-Responsive Nanoparticles for Synergetic Chemo-Photothermal Therapy of Tumors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 28802-28817	9.5	14
75	Polyoxomolybdate (POM) nanoclusters with radiosensitizing and scintillating properties for low dose X-ray inducible radiation-radiodynamic therapy. <i>Nanoscale Horizons</i> , 2020 , 5, 109-118	10.8	14
74	Perfluorocarbon nanodroplets stabilized with cisplatin-prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer. <i>Nanoscale</i> , 2020 , 12, 14764-14774	7.7	13
73	Upconversion nanoparticles for potential cancer theranostics. <i>Therapeutic Delivery</i> , 2011 , 2, 1235-9	3.8	13
72	Poly-(allylamine hydrochloride)-coated but not poly(acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5769-5776	7.3	12
71	Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. <i>CheM</i> , 2022 , 8, 268-286	16.2	12
70	Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. <i>ACS Applied Materials & Combined Scaffold With Checkpoint Combined Chemoimmunotherapy</i> . <i>ACS Applied Materials & Combined Chemoimmunotherapy</i> . <i>ACS Applied Materials & Combined Chemoimmunotherapy</i> .	9.5	12
69	A versatile @lick chemistry@oute to size-restricted, robust, and functionalizable hydrophilic nanocrystals. <i>Small</i> , 2015 , 11, 1644-8	11	11
68	Synthesis of a UCNPs@SiO2@gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. <i>RSC Advances</i> , 2016 , 6, 98968-98974	3.7	11
67	Controllable growth of Au nanostructures onto MoS nanosheets for dual-modal imaging and photothermal-radiation combined therapy. <i>Nanoscale</i> , 2019 , 11, 22788-22795	7.7	11
66	Biodegradable magnesium alloy with eddy thermal effect for effective and accurate magnetic hyperthermia ablation of tumors. <i>National Science Review</i> , 2021 , 8, nwaa122	10.8	11
65	Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. <i>Carbon</i> , 2018 , 129, 495-503	10.4	11
64	Biomedical polymers: synthesis, properties, and applications Science China Chemistry, 2022, 1-66	7.9	11
63	Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. <i>International Journal of Pharmaceutics</i> , 2020 , 582, 119321	6.5	10

(2022-2016)

62	Cancer Therapy: Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer (Adv. Mater. 14/2016). <i>Advanced Materials</i> , 2016 , 28, 2654-2654	24	10
61	Chemiluminescent Nanosystems for Imaging Cancer Chemodynamic Therapy. <i>CheM</i> , 2020 , 6, 2127-2129	16.2	10
60	Immunosuppressive Nanoparticles for Management of Immune-Related Adverse Events in Liver. <i>ACS Nano</i> , 2021 , 15, 9111-9125	16.7	10
59	Ultra-small natural product based coordination polymer nanodots for acute kidney injury relief. Materials Horizons, 2021 , 8, 1314-1322	14.4	10
58	Chelator-Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. <i>Angewandte Chemie</i> , 2017 , 129, 2935-2938	3.6	9
57	Molecular domino reactor built by automated modular synthesis for cancer treatment. <i>Theranostics</i> , 2020 , 10, 4030-4041	12.1	9
56	Cell-Penetrating Peptide Enhanced Antigen Presentation for Cancer Immunotherapy. <i>Bioconjugate Chemistry</i> , 2019 , 30, 2115-2126	6.3	9
55	Mesenchymal Stem Cell-Derived Extracellular Vesicles with High PD-L1 Expression for Autoimmune Diseases Treatment. <i>Advanced Materials</i> , 2021 , e2106265	24	9
54	Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001167	10.1	9
53	A general in-situ reduction method to prepare core-shell liquid-metal / metal nanoparticles for photothermally enhanced catalytic cancer therapy. <i>Biomaterials</i> , 2021 , 277, 121125	15.6	9
52	Recent advances in the development of nanomaterials for DC-based immunotherapy. <i>Science Bulletin</i> , 2016 , 61, 514-523	10.6	8
51	Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform. <i>Angewandte Chemie</i> , 2016 , 128, 2162-2166	3.6	8
50	Coordination Polymer-Coated CaCO Reinforces Radiotherapy by Reprogramming the Immunosuppressive Metabolic Microenvironment. <i>Advanced Materials</i> , 2021 , 34, e2106520	24	8
49	Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. <i>Biomaterials</i> , 2021 , 121250	15.6	8
48	Two Dimensional Transitional Metal Dichalcogenides for Biomedical Applications. <i>Acta Chimica Sinica</i> , 2015 , 73, 902	3.3	8
47	Biological membrane derived nanomedicines for cancer therapy. <i>Science China Chemistry</i> , 2021 , 64, 719	-7/33/3	8
46	Biomaterial-mediated internal radioisotope therapy. <i>Materials Horizons</i> , 2021 , 8, 1348-1366	14.4	8
45	Targeting Endogenous Hydrogen Peroxide at Bone Defects Promotes Bone Repair. <i>Advanced Functional Materials</i> , 2022 , 32, 2111208	15.6	8

44	Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma <i>ACS Nano</i> , 2022 ,	16.7	7
43	Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. <i>Advanced Drug Delivery Reviews</i> , 2021 , 179, 114004	18.5	7
42	Guiding Drug Through Interrupted Bloodstream for Potentiated Thrombolysis by C-Shaped Magnetic Actuation System In Vivo. <i>Advanced Materials</i> , 2021 , e2105351	24	7
41	Surfactant-stripped J-aggregates of azaBODIPY derivatives: All-in-one phototheranostics in the second near infrared window. <i>Journal of Controlled Release</i> , 2020 , 326, 256-264	11.7	7
40	Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes. <i>Chemical Engineering Journal</i> , 2021 , 414, 128731	14.7	7
39	Equipping Cancer Cell Membrane Vesicles with Functional DNA as a Targeted Vaccine for Cancer Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 9410-9418	11.5	6
38	Reactive Oxygen Species Scavenging Sutures for Enhanced Wound Sealing and Repair. <i>Small Structures</i> , 2021 , 2, 2100002	8.7	6
37	Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery. <i>Journal of Controlled Release</i> , 2021 , 329, 882-893	11.7	6
36	Near-infrared dye bound human serum albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy preventing tumor metastasis. <i>Journal of Controlled Release</i> , 2015 , 213, e89	11.7	5
35	Albumin-Based Therapeutics Capable of Glutathione Consumption and Hydrogen Peroxide Generation for Synergetic Chemodynamic and Chemotherapy of Cancer ACS Nano, 2022,	16.7	5
34	Effect of the Temperature on NO Release Characteristics in an O2/CO2 Atmosphere during Coal Combustion. <i>Energy & Day 34</i> , 842-852	4.1	5
33	Thermo-Triggered In Situ Chitosan-Based Gelation System for Repeated and Enhanced Sonodynamic Therapy Post a Single Injection. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001208	10.1	5
32	Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy <i>Biomaterials</i> , 2022 , 283, 121428	15.6	5
31	Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth <i>Nature Communications</i> , 2022 , 13, 2336	17.4	5
30	cRGD-Functionalized AuNR-cored PEG-PCL nanoparticles for efficacious glioma chemotherapy. Journal of Controlled Release, 2015 , 213, e135	11.7	4
29	Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment <i>Biomaterials</i> , 2021 , 281, 121332	15.6	4
28	CaCO -Encapuslated Microspheres for Enhanced Transhepatic Arterial Embolization Treatment of Hepatocellular Carcinoma. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100748	10.1	4
27	Collagen-targeted tumor-specific transepithelial penetration enhancer mediated intravesical chemoimmunotherapy for non-muscle-invasive bladder cancer <i>Biomaterials</i> , 2022 , 283, 121422	15.6	4

26	Photothermal Therapy: 1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy (Adv. Mater. 40/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3	
25	Nanographene in Biomedical Applications 2016 , 251-282		3	
24	Photoacoustic molecular imaging using single walled carbon nanotubes in living mice 2009,		3	
23	Nanovaccines with cell-derived components for cancer immunotherapy <i>Advanced Drug Delivery Reviews</i> , 2022 , 114107	18.5	3	
22	Injectable Immunotherapeutic Thermogel for Enhanced Immunotherapy Post Tumor Radiofrequency Ablation. <i>Small</i> , 2021 , e2104773	11	3	
21	Coordination Polymers Integrating Metalloimmunology with Immune Modulation to Elicit Robust Cancer Chemoimmunotherapy. <i>CCS Chemistry</i> ,2629-2642	7.2	3	
20	Transmucosal Delivery of Self-Assembling Photosensitizer-Nitazoxanide Nanocomplexes with Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1485-1495	5.5	3	
19	Biomedical Applications of Carbon Nanomaterials 2016 , 131-162		2	
18	Hydrophilic hybrid materials with magnetism & NIR fluorescence via surface-initiated RAFT polymerization. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3257-3266	7.3	2	
17	Biomedical Applications: Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light (Adv. Funct. Mater. 24/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3018-3018	15.6	2	
16	Nanoplatforms for Raman Molecular Imaging in Biological Systems 2011 , 197-216		2	
15	Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for tumor-sensitive and MRI-guided photonic breast-cancer hyperthermia in the NIR-II biowindow <i>Biomaterials Science</i> , 2022 ,	7.4	2	
14	Antitumor Agents Based on Metal@rganic Frameworks. <i>Angewandte Chemie</i> , 2021 , 133, 16901-16914	3.6	2	
13	Fluorinated Chitosan Mediated Synthesis of Copper Selenide Nanoparticles with Enhanced Penetration for Second Near-Infrared Photothermal Therapy of Bladder Cancer. <i>Advanced Therapeutics</i> , 2021 , 4, 2100043	4.9	2	
12	DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. <i>Angewandte Chemie</i> , 2020 , 132, 14952-14963	3.6	1	
11	Effect of CO2 on N Distribution in Pyrolysis and Oxidation of Volatile N and Char N in Oxy-Fuel Combustion at High Temperatures. <i>Energy & Energy &</i>	4.1	1	
10	Lipid-Coated CaCO Nanoparticles as a Versatile pH-Responsive Drug Delivery Platform to Enable Combined Chemotherapy of Breast Cancer <i>ACS Applied Bio Materials</i> , 2022 ,	4.1	1	
9	Albumin-binding lipid-aptamer conjugates for cancer immunoimaging and immunotherapy. <i>Science China Chemistry</i> , 2022 , 65, 574-583	7.9	1	

8	Two-phase releasing immune-stimulating composite orchestrates protection against microbial infections. <i>Biomaterials</i> , 2021 , 277, 121106	15.6	О
7	High relaxivity Gd-based organic nanoparticles for efficient magnetic resonance angiography <i>Journal of Nanobiotechnology</i> , 2022 , 20, 170	9.4	O
6	Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal B rganic nanosonosensitizer. <i>Nano Research</i> ,1	10	О
5	Eddy current thermal effect based on magnesium microrods for combined tumor therapy. <i>Chemical Engineering Journal</i> , 2022 , 446, 137038	14.7	Ο
4	Up-Conversion Nanoparticles for Early Cancer Diagnosis. <i>Frontiers in Nanobiomedical Research</i> , 2015 , 1-19		
3	Conjugated Polymers for Near-Infrared Photothermal Therapy of Cancer 2018 , 295-320		
2	Nanoparticle-Based Phototherapy in Combination with Checkpoint Blockade for Cancer Immunotherapy. <i>Bioanalysis</i> , 2021 , 209-222	0.5	
1	Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. <i>Chemical Research in Chinese Universities</i> ,1	2.2	