
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3175370/publications.pdf Version: 2024-02-01



7нило Lui

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. Journal of the American<br>Chemical Society, 2008, 130, 10876-10877.                                                                                                   | 6.6  | 3,344     |
| 2  | Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1, 203-212.                                                                                                                                                      | 5.8  | 3,043     |
| 3  | Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Letters,<br>2010, 10, 3318-3323.                                                                                                                        | 4.5  | 2,213     |
| 4  | Functional Nanomaterials for Phototherapies of Cancer. Chemical Reviews, 2014, 114, 10869-10939.                                                                                                                                                  | 23.0 | 2,120     |
| 5  | Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery.<br>Nano Research, 2009, 2, 85-120.                                                                                                           | 5.8  | 1,515     |
| 6  | Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42, 530-547.                                                                                                                                              | 18.7 | 1,483     |
| 7  | Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews, 2012, 41, 1323-1349.                                                                                                                                               | 18.7 | 1,478     |
| 8  | In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature<br>Nanotechnology, 2007, 2, 47-52.                                                                                                              | 15.6 | 1,384     |
| 9  | Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS<br>Nano, 2007, 1, 50-56.                                                                                                                            | 7.3  | 1,290     |
| 10 | Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016, 7, 13193.                                                                              | 5.8  | 1,270     |
| 11 | Drug Delivery with Carbon Nanotubes for <i>In vivo</i> Cancer Treatment. Cancer Research, 2008, 68, 6652-6660.                                                                                                                                    | 0.4  | 1,219     |
| 12 | Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotechnology, 2008, 3, 557-562.                                                                                                                               | 15.6 | 1,215     |
| 13 | Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nature Communications, 2017, 8, 902.                                                                  | 5.8  | 1,124     |
| 14 | Drug Delivery with PEGylated MoS <sub>2</sub> Nanoâ€sheets for Combined Photothermal and Chemotherapy of Cancer. Advanced Materials, 2014, 26, 3433-3440.                                                                                         | 11.1 | 1,072     |
| 15 | A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature<br>Nanotechnology, 2009, 4, 773-780.                                                                                                                   | 15.6 | 1,068     |
| 16 | Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in<br>mice probed by Raman spectroscopy. Proceedings of the National Academy of Sciences of the United<br>States of America, 2008, 105, 1410-1415. | 3.3  | 1,037     |
| 17 | PEGylated WS <sub>2</sub> Nanosheets as a Multifunctional Theranostic Agent for in vivo Dualâ€Modal<br>CT/Photoacoustic Imaging Guided Photothermal Therapy. Advanced Materials, 2014, 26, 1886-1893.                                             | 11.1 | 1,002     |
| 18 | Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano, 2011, 5, 7000-7009.                                                                                                                                      | 7.3  | 987       |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Intelligent Albumin–MnO <sub>2</sub> Nanoparticles as pH″H <sub>2</sub> O <sub>2</sub> â€Responsive<br>Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy. Advanced<br>Materials, 2016, 28, 7129-7136. | 11.1 | 882       |
| 20 | Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets<br>Anchored with Magnetic Nanoparticles. Advanced Materials, 2012, 24, 1868-1872.                                                                | 11.1 | 865       |
| 21 | Innovative Strategies for Hypoxicâ€Tumor Photodynamic Therapy. Angewandte Chemie - International<br>Edition, 2018, 57, 11522-11531.                                                                                                      | 7.2  | 849       |
| 22 | FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents.<br>Nature Materials, 2006, 5, 971-976.                                                                                                | 13.3 | 807       |
| 23 | Carbon Nanotubes as Intracellular Transporters for Proteins and DNA: An Investigation of the Uptake<br>Mechanism and Pathway. Angewandte Chemie - International Edition, 2006, 45, 577-581.                                              | 7.2  | 800       |
| 24 | <i>In Vivo</i> Pharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice. ACS Nano, 2011, 5, 516-522.                                                                                                    | 7.3  | 774       |
| 25 | Near-infrared light induced inÂvivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011, 32, 6145-6154.                                                                                               | 5.7  | 757       |
| 26 | Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for Efficient Intracellular<br>Delivery of siRNA and Potent Gene Silencing. Journal of the American Chemical Society, 2005, 127,<br>12492-12493.                     | 6.6  | 749       |
| 27 | Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rareâ€Earth Oxides. Advanced Materials, 2012, 24, 1987-1993.                                                                       | 11.1 | 731       |
| 28 | A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature<br>Nanotechnology, 2008, 3, 216-221.                                                                                                        | 15.6 | 705       |
| 29 | The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33, 2206-2214.                                                                | 5.7  | 700       |
| 30 | In Vitro and In Vivo Nearâ€Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic<br>Nanoparticles. Advanced Materials, 2012, 24, 5586-5592.                                                                                  | 11.1 | 684       |
| 31 | Targeted Single-Wall Carbon Nanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing<br>Device. Journal of the American Chemical Society, 2008, 130, 11467-11476.                                                              | 6.6  | 646       |
| 32 | Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6, 317-324.                                                                                                                                                   | 1.7  | 636       |
| 33 | siRNA Delivery into Human Tâ€Cells and Primary Cells with Carbon-Nanotube Transporters. Angewandte<br>Chemie - International Edition, 2007, 46, 2023-2027.                                                                               | 7.2  | 628       |
| 34 | In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots<br>Produced from Carbon Nanotubes and Graphite. Small, 2012, 8, 281-290.                                                               | 5.2  | 625       |
| 35 | Ultrathin WS <sub>2</sub> Nanoflakes as a Highâ€Performance Electrocatalyst for the Hydrogen<br>Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7860-7863.                                                      | 7.2  | 622       |
| 36 | Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials, 2011, 32, 1110-1120.                                                                                          | 5.7  | 614       |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in<br>Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano, 2017, 11,<br>4463-4474.                                    | 7.3  | 583       |
| 38 | Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and<br>Dualâ€Targeted Photothermal Therapy. Angewandte Chemie - International Edition, 2011, 50, 7385-7390.                                                  | 7.2  | 567       |
| 39 | A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5, 199-212.                                                          | 5.8  | 562       |
| 40 | PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation.<br>Journal of the American Chemical Society, 2009, 131, 4783-4787.                                                                                  | 6.6  | 548       |
| 41 | Graphene based gene transfection. Nanoscale, 2011, 3, 1252.                                                                                                                                                                                       | 2.8  | 537       |
| 42 | Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. Advanced Materials, 2017, 29, 1700996.                                                                                                                               | 11.1 | 528       |
| 43 | Carbon materials for drug delivery & amp; cancer therapy. Materials Today, 2011, 14, 316-323.                                                                                                                                                     | 8.3  | 527       |
| 44 | Perfluorocarbon‣oaded Hollow Bi <sub>2</sub> Se <sub>3</sub> Nanoparticles for Timely Supply of<br>Oxygen under Nearâ€Infrared Light to Enhance the Radiotherapy of Cancer. Advanced Materials, 2016, 28,<br>2716-2723.                           | 11.1 | 518       |
| 45 | Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome<br>Hypoxia-Associated Resistance in Cancer Therapies. Nano Letters, 2016, 16, 6145-6153.                                                               | 4.5  | 509       |
| 46 | Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano, 2018, 12, 5121-5129.                                                                                                 | 7.3  | 505       |
| 47 | Modulation of Hypoxia in Solid Tumor Microenvironment with MnO <sub>2</sub> Nanoparticles to Enhance Photodynamic Therapy. Advanced Functional Materials, 2016, 26, 5490-5498.                                                                    | 7.8  | 497       |
| 48 | Immunological Responses Triggered by Photothermal Therapy with Carbon Nanotubes in Combination<br>with Antiâ€CTLAâ€4 Therapy to Inhibit Cancer Metastasis. Advanced Materials, 2014, 26, 8154-8162.                                               | 11.1 | 485       |
| 49 | Organicâ€Baseâ€Driven Intercalation and Delamination for the Production of Functionalized Titanium<br>Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie -<br>International Edition, 2016, 55, 14569-14574. | 7.2  | 480       |
| 50 | Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy.<br>Angewandte Chemie - International Edition, 2009, 48, 7668-7672.                                                                                         | 7.2  | 479       |
| 51 | Ultrathin MoS <sub>2(1–<i>x</i>)</sub> Se <sub>2<i>x</i></sub> Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2213-2219.                                                                              | 5.5  | 473       |
| 52 | Erythrocyteâ€Membraneâ€Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve<br>Tumor Hypoxia and Enhance Cancer Radiotherapy. Advanced Materials, 2017, 29, 1701429.                                                      | 11.1 | 473       |
| 53 | Iron Oxide Decorated MoS <sub>2</sub> Nanosheets with Double PEGylation for Chelator-Free<br>Radiolabeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano, 2015, 9, 950-960.                                                        | 7.3  | 460       |
| 54 | Selective Probing and Imaging of Cells with Single Walled Carbon Nanotubes as Near-Infrared<br>Fluorescent Molecules. Nano Letters, 2008, 8, 586-590.                                                                                             | 4.5  | 457       |

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Tumor Metastasis Inhibition by Imagingâ€Guided Photothermal Therapy with Singleâ€Walled Carbon<br>Nanotubes. Advanced Materials, 2014, 26, 5646-5652.                                                                                                                   | 11.1 | 454       |
| 56 | Nanoparticleâ€Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. Advanced Materials, 2019, 31, e1802228.                                                                                                                                                     | 11.1 | 448       |
| 57 | Iron Oxide @ Polypyrrole Nanoparticles as a Multifunctional Drug Carrier for Remotely Controlled Cancer Therapy with Synergistic Antitumor Effect. ACS Nano, 2013, 7, 6782-6795.                                                                                        | 7.3  | 445       |
| 58 | H <sub>2</sub> O <sub>2</sub> -responsive liposomal nanoprobe for photoacoustic inflammation<br>imaging and tumor theranostics via in vivo chromogenic assay. Proceedings of the National Academy<br>of Sciences of the United States of America, 2017, 114, 5343-5348. | 3.3  | 445       |
| 59 | Noble Metal Coated Single-Walled Carbon Nanotubes for Applications in Surface Enhanced Raman<br>Scattering Imaging and Photothermal Therapy. Journal of the American Chemical Society, 2012, 134,<br>7414-7422.                                                         | 6.6  | 440       |
| 60 | In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor<br>for combination therapy. Science Translational Medicine, 2018, 10, .                                                                                            | 5.8  | 439       |
| 61 | 1D Coordination Polymer Nanofibers for Lowâ€Temperature Photothermal Therapy. Advanced Materials,<br>2017, 29, 1703588.                                                                                                                                                 | 11.1 | 437       |
| 62 | Inâ€Vitro and Inâ€Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion<br>Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 3125-3129.                                                                                          | 7.2  | 428       |
| 63 | Graphene Oxide–Silver Nanocomposite As a Highly Effective Antibacterial Agent with Species-Specific<br>Mechanisms. ACS Applied Materials & Interfaces, 2013, 5, 3867-3874.                                                                                              | 4.0  | 424       |
| 64 | Singleâ€Band Upconversion Emission in Lanthanideâ€Doped KMnF <sub>3</sub> Nanocrystals. Angewandte<br>Chemie - International Edition, 2011, 50, 10369-10372.                                                                                                            | 7.2  | 423       |
| 65 | Organic Stealth Nanoparticles for Highly Effective <i>in Vivo</i> Near-Infrared Photothermal Therapy of Cancer. ACS Nano, 2012, 6, 5605-5613.                                                                                                                           | 7.3  | 405       |
| 66 | Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today, 2020, 35, 100946.                                                                                                                                                               | 6.2  | 405       |
| 67 | Preparation of carbon nanotube bioconjugates for biomedical applications. Nature Protocols, 2009, 4, 1372-1381.                                                                                                                                                         | 5.5  | 398       |
| 68 | Synthesis of Hollow Biomineralized CaCO <sub>3</sub> –Polydopamine Nanoparticles for Multimodal<br>Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. Journal of the<br>American Chemical Society, 2018, 140, 2165-2178.                    | 6.6  | 396       |
| 69 | Behavior and Toxicity of Graphene and Its Functionalized Derivatives in Biological Systems. Small, 2013, 9, 1492-1503.                                                                                                                                                  | 5.2  | 392       |
| 70 | Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials, 2011, 32, 144-151.                                                                                                                       | 5.7  | 391       |
| 71 | An Imagable and Photothermal "Abraxaneâ€Like―Nanodrug for Combination Cancer Therapy to Treat<br>Subcutaneous and Metastatic Breast Tumors. Advanced Materials, 2015, 27, 903-910.                                                                                      | 11.1 | 391       |
| 72 | Recent advances in the development of organic photothermal nano-agents. Nano Research, 2015, 8, 340-354.                                                                                                                                                                | 5.8  | 388       |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Ultrasmall Oxygenâ€Ðeficient Bimetallic Oxide MnWO <i><sub>X</sub></i> Nanoparticles for Depletion<br>of Endogenous GSH and Enhanced Sonodynamic Cancer Therapy. Advanced Materials, 2019, 31, e1900730. | 11.1 | 387       |
| 74 | Nanoscale metalâ^'organic frameworks for combined photodynamic & radiation therapy in cancer<br>treatment. Biomaterials, 2016, 97, 1-9.                                                                  | 5.7  | 379       |
| 75 | Polyethylene Clycol and Polyethylenimine Dualâ€Functionalized Nanoâ€Graphene Oxide for<br>Photothermally Enhanced Gene Delivery. Small, 2013, 9, 1989-1997.                                              | 5.2  | 378       |
| 76 | Ultrahigh Sensitivity Carbon Nanotube Agents for Photoacoustic Molecular Imaging in Living Mice.<br>Nano Letters, 2010, 10, 2168-2172.                                                                   | 4.5  | 376       |
| 77 | 2D Nanomaterials for Cancer Theranostic Applications. Advanced Materials, 2020, 32, e1902333.                                                                                                            | 11.1 | 375       |
| 78 | Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade<br>imparts potent antitumour responses. Nature Biomedical Engineering, 2018, 2, 611-621.                   | 11.6 | 374       |
| 79 | ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials, 2020, 258, 120286.                                                                                        | 5.7  | 370       |
| 80 | Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics. Theranostics, 2013, 3, 317-330.                                                                                       | 4.6  | 369       |
| 81 | Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted<br>drug delivery, phototherapy, and immunotherapy. Chemical Society Reviews, 2016, 45, 6250-6269.         | 18.7 | 365       |
| 82 | Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials, 2012, 33, 2215-2222.                                     | 5.7  | 360       |
| 83 | Amplification of Tumor Oxidative Stresses with Liposomal Fenton Catalyst and Glutathione Inhibitor<br>for Enhanced Cancer Chemotherapy and Radiotherapy. Nano Letters, 2019, 19, 805-815.                | 4.5  | 360       |
| 84 | Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors<br>Post-Photodynamic Therapy. ACS Nano, 2017, 11, 927-937.                                                   | 7.3  | 358       |
| 85 | InÂvivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials, 2013, 34, 2787-2795.                                   | 5.7  | 354       |
| 86 | Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor.<br>Nanoscale, 2014, 6, 10505-10510.                                                                   | 2.8  | 352       |
| 87 | Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug<br>Delivery Reviews, 2016, 105, 228-241.                                                               | 6.6  | 352       |
| 88 | GSHâ€Đepleted PtCu <sub>3</sub> Nanocages for Chemodynamic―Enhanced Sonodynamic Cancer Therapy.<br>Advanced Functional Materials, 2020, 30, 1907954.                                                     | 7.8  | 352       |
| 89 | Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided<br>Photothermal Tumor Ablation. ACS Nano, 2017, 11, 12696-12712.                                              | 7.3  | 350       |
| 90 | Ultrafine Titanium Monoxide (TiO <sub>1+<i>x</i></sub> ) Nanorods for Enhanced Sonodynamic<br>Therapy. Journal of the American Chemical Society, 2020, 142, 6527-6537.                                   | 6.6  | 350       |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced<br>Photodynamic-Immunotherapy of Cancer. Nano Letters, 2018, 18, 2475-2484.                                                         | 4.5  | 348       |
| 92  | Catalase‣oaded TaOx Nanoshells as Bioâ€Nanoreactors Combining Highâ€Z Element and Enzyme Delivery<br>for Enhancing Radiotherapy. Advanced Materials, 2016, 28, 7143-7148.                                                   | 11.1 | 346       |
| 93  | Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.                                                                                                                       | 4.2  | 336       |
| 94  | A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1043-1052.                                                            | 15.6 | 332       |
| 95  | Core–Shell MnSe@Bi <sub>2</sub> Se <sub>3</sub> Fabricated via a Cation Exchange Method as Novel<br>Nanotheranostics for Multimodal Imaging and Synergistic Thermoradiotherapy. Advanced Materials,<br>2015, 27, 6110-6117. | 11.1 | 330       |
| 96  | Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale, 2013, 5, 23-37.                                                                                         | 2.8  | 325       |
| 97  | Combined photothermal and photodynamic therapy delivered by PEGylated<br>MoS <sub>2</sub> nanosheets. Nanoscale, 2014, 6, 11219-11225.                                                                                      | 2.8  | 323       |
| 98  | <i>In Vivo</i> Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nanographene. ACS Nano, 2012, 6, 2361-2370.                                                                                | 7.3  | 318       |
| 99  | Imagingâ€Guided pHâ€Sensitive Photodynamic Therapy Using Charge Reversible Upconversion<br>Nanoparticles under Nearâ€Infrared Light. Advanced Functional Materials, 2013, 23, 3077-3086.                                    | 7.8  | 318       |
| 100 | Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnology, 2008, 26, 1285-1292.                                                                                                            | 9.4  | 317       |
| 101 | Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted<br>Combination Therapy. ACS Nano, 2015, 9, 5223-5233.                                                                               | 7.3  | 314       |
| 102 | In vitro and in vivo behaviors of dextran functionalized graphene. Carbon, 2011, 49, 4040-4049.                                                                                                                             | 5.4  | 305       |
| 103 | Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy.<br>Biomaterials, 2013, 34, 4786-4793.                                                                                         | 5.7  | 305       |
| 104 | Carbon nanotubes for biomedical imaging: The recent advances. Advanced Drug Delivery Reviews, 2013, 65, 1951-1963.                                                                                                          | 6.6  | 301       |
| 105 | Nanoscale Metal–Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided<br>Photothermal Therapy. ACS Nano, 2016, 10, 2774-2781.                                                                        | 7.3  | 300       |
| 106 | Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials, 2014, 35, 2915-2923.                                                                           | 5.7  | 297       |
| 107 | Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano<br>Research, 2010, 3, 722-732.                                                                                                | 5.8  | 289       |
| 108 | Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided<br>Tumor Hyperthermia. Chemistry of Materials, 2017, 29, 8637-8652.                                                            | 3.2  | 285       |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature<br>Protocols, 2013, 8, 2392-2403.                                                                       | 5.5  | 284       |
| 110 | Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials, 2011, 32, 9364-9373.                                  | 5.7  | 282       |
| 111 | Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy. Nano Letters, 2016, 16, 2512-2521.                                                                                               | 4.5  | 279       |
| 112 | Lightâ€Triggered In Situ Gelation to Enable Robust Photodynamicâ€Immunotherapy by Repeated<br>Stimulations. Advanced Materials, 2019, 31, e1900927.                                                      | 11.1 | 276       |
| 113 | Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials, 2015, 60, 62-71.                                   | 5.7  | 264       |
| 114 | Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used<br>Prodrug-Induced Photodynamic Therapy. ACS Nano, 2014, 8, 10621-10630.                                     | 7.3  | 263       |
| 115 | Bottom-Up Synthesis of Metal-Ion-Doped WS <sub>2</sub> Nanoflakes for Cancer Theranostics. ACS<br>Nano, 2015, 9, 11090-11101.                                                                            | 7.3  | 263       |
| 116 | A Hypoxiaâ€Responsive Albuminâ€Based Nanosystem for Deep Tumor Penetration and Excellent Therapeutic<br>Efficacy. Advanced Materials, 2019, 31, e1901513.                                                | 11.1 | 263       |
| 117 | Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano<br>Today, 2018, 21, 55-73.                                                                                     | 6.2  | 259       |
| 118 | Inorganic nanomaterials with rapid clearance for biomedical applications. Chemical Society Reviews, 2021, 50, 8669-8742.                                                                                 | 18.7 | 259       |
| 119 | Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing<br>Capabilities as a Therapeutic Nanoplatform. Angewandte Chemie - International Edition, 2016, 55,<br>2122-2126. | 7.2  | 254       |
| 120 | Multiplexed Multicolor Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon<br>Nanotubes. Journal of the American Chemical Society, 2008, 130, 13540-13541.                       | 6.6  | 251       |
| 121 | Ultra‧mall Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided<br>Photothermal Therapy. Advanced Functional Materials, 2014, 24, 1194-1201.                                 | 7.8  | 250       |
| 122 | The acidic tumor microenvironment: a target for smart cancer nano-theranostics. National Science<br>Review, 2018, 5, 269-286.                                                                            | 4.6  | 250       |
| 123 | Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today, 2020, 32, 100851.                                                                                       | 6.2  | 249       |
| 124 | Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication. ACS<br>Nano, 2017, 11, 9467-9480.                                                                                  | 7.3  | 248       |
| 125 | A Selfâ€Assembled Albuminâ€Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. Advanced<br>Materials, 2015, 27, 6820-6827.                                                                 | 11.1 | 244       |
| 126 | Polydopamine Nanoparticles as a Versatile Molecular Loading Platform to Enable Imaging-guided Cancer Combination Therapy. Theranostics, 2016, 6, 1031-1042.                                              | 4.6  | 244       |

| #   | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Engineering of Multifunctional Nanoâ€Micelles for Combined Photothermal and Photodynamic Therapy<br>Under the Guidance of Multimodal Imaging. Advanced Functional Materials, 2014, 24, 6492-6502.                                                                             | 7.8  | 242       |
| 128 | Photosensitizerâ€Conjugated Albuminâ^'Polypyrrole Nanoparticles for Imagingâ€Guided In Vivo<br>Photodynamic/Photothermal Therapy. Small, 2015, 11, 3932-3941.                                                                                                                 | 5.2  | 240       |
| 129 | PEGylated Micelle Nanoparticles Encapsulating a Nonâ€Fluorescent Nearâ€Infrared Organic Dye as a Safe<br>and Highlyâ€Effective Photothermal Agent for In Vivo Cancer Therapy. Advanced Functional Materials,<br>2013, 23, 5893-5902.                                          | 7.8  | 236       |
| 130 | Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of<br>H <sub>2</sub> O <sub>2</sub> and Catalase for Enhanced Radio-Immunotherapy of Cancer. Nano<br>Letters, 2018, 18, 6360-6368.                                                                       | 4.5  | 234       |
| 131 | Albumin Carriers for Cancer Theranostics: A Conventional Platform with New Promise. Advanced Materials, 2016, 28, 10557-10566.                                                                                                                                                | 11.1 | 232       |
| 132 | Multifunctional Two-Dimensional Core–Shell MXene@Gold Nanocomposites for Enhanced<br>Photo–Radio Combined Therapy in the Second Biological Window. ACS Nano, 2019, 13, 284-294.                                                                                               | 7.3  | 232       |
| 133 | Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice.<br>Biomaterials, 2013, 34, 3639-3646.                                                                                                                                            | 5.7  | 228       |
| 134 | Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy.<br>Science Advances, 2019, 5, eaaw6870.                                                                                                                                       | 4.7  | 228       |
| 135 | CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials, 2016, 110, 60-70.                                                                                         | 5.7  | 227       |
| 136 | Polydopamine as a Biocompatible Multifunctional Nanocarrier for Combined Radioisotope Therapy and Chemotherapy of Cancer. Advanced Functional Materials, 2015, 25, 7327-7336.                                                                                                 | 7.8  | 225       |
| 137 | FeSe <sub>2</sub> â€Decorated Bi <sub>2</sub> Se <sub>3</sub> Nanosheets Fabricated via Cation<br>Exchange for Chelatorâ€Free <sup>64</sup> Cuâ€Labeling and Multimodal Imageâ€Guided<br>Photothermalâ€Radiation Therapy. Advanced Functional Materials, 2016, 26, 2185-2197. | 7.8  | 225       |
| 138 | Conjugated polymers for photothermal therapy of cancer. Polymer Chemistry, 2014, 5, 1573-1580.                                                                                                                                                                                | 1.9  | 224       |
| 139 | Family of Enhanced Photoacoustic Imaging Agents for High-Sensitivity and Multiplexing Studies in<br>Living Mice. ACS Nano, 2012, 6, 4694-4701.                                                                                                                                | 7.3  | 221       |
| 140 | Mesoporous Silica Coated Singleâ€Walled Carbon Nanotubes as a Multifunctional Lightâ€Responsive<br>Platform for Cancer Combination Therapy. Advanced Functional Materials, 2015, 25, 384-392.                                                                                 | 7.8  | 219       |
| 141 | Multifunctional Theranostic Red Blood Cells For Magneticâ€Fieldâ€Enhanced in vivo Combination Therapy<br>of Cancer. Advanced Materials, 2014, 26, 4794-4802.                                                                                                                  | 11.1 | 214       |
| 142 | Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials, 2017, 138, 13-21.                                                                                                                  | 5.7  | 214       |
| 143 | PECylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials, 2014, 35, 9844-9852.                                                                                                                         | 5.7  | 210       |
| 144 | Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials, 2014, 35, 8206-8214.                                                                                                            | 5.7  | 210       |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chemical Society Reviews, 2019, 48, 5506-5526.                                                                                                       | 18.7 | 209       |
| 146 | Imagingâ€Guided Combined Photothermal and Radiotherapy to Treat Subcutaneous and Metastatic<br>Tumors Using Iodineâ€131â€Doped Copper Sulfide Nanoparticles. Advanced Functional Materials, 2015, 25,<br>4689-4699.                            | 7.8  | 207       |
| 147 | Functionalized Graphene Oxide in Enzyme Engineering: A Selective Modulator for Enzyme Activity and<br>Thermostability. ACS Nano, 2012, 6, 4864-4875.                                                                                           | 7.3  | 204       |
| 148 | Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. ACS Nano, 2015, 9, 6401-6411.                                                                       | 7.3  | 204       |
| 149 | Hollow Cu <sub>2</sub> Se Nanozymes for Tumor Photothermal-Catalytic Therapy. Chemistry of<br>Materials, 2019, 31, 6174-6186.                                                                                                                  | 3.2  | 204       |
| 150 | Surface Coatingâ€Dependent Cytotoxicity and Degradation of Graphene Derivatives: Towards the Design<br>of Nonâ€Toxic, Degradable Nanoâ€Graphene. Small, 2014, 10, 1544-1554.                                                                   | 5.2  | 201       |
| 151 | Two-dimensional TiS <sub>2</sub> nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale, 2015, 7, 6380-6387.                                                                                                  | 2.8  | 199       |
| 152 | TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials, 2017, 112, 257-263.                                                                                  | 5.7  | 199       |
| 153 | Synthesis of CaCO3-Based Nanomedicine for Enhanced Sonodynamic Therapy via Amplification of Tumor Oxidative Stress. CheM, 2020, 6, 1391-1407.                                                                                                  | 5.8  | 199       |
| 154 | Photosensitizer Loaded Nano-Graphene for Multimodality Imaging Guided Tumor Photodynamic<br>Therapy. Theranostics, 2014, 4, 229-239.                                                                                                           | 4.6  | 198       |
| 155 | Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials, 2018, 162, 123-131.                                                                                                          | 5.7  | 196       |
| 156 | An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials, 2014, 35, 9355-9362.                                                          | 5.7  | 194       |
| 157 | Ultrasmall Iron-Doped Titanium Oxide Nanodots for Enhanced Sonodynamic and Chemodynamic<br>Cancer Therapy. ACS Nano, 2020, 14, 15119-15130.                                                                                                    | 7.3  | 194       |
| 158 | Radionuclide 1311 labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials, 2015, 66, 21-28.                                                                                 | 5.7  | 192       |
| 159 | Nanoscaleâ€Coordinationâ€Polymerâ€Shelled Manganese Dioxide Composite Nanoparticles: A Multistage<br>Redox/pH/H <sub>2</sub> O <sub>2</sub> â€Responsive Cancer Theranostic Nanoplatform. Advanced<br>Functional Materials, 2017, 27, 1605926. | 7.8  | 192       |
| 160 | In Vivo Longâ€Term Biodistribution, Excretion, and Toxicology of PEGylated Transitionâ€Metal<br>Dichalcogenides MS <sub>2</sub> (M = Mo, W, Ti) Nanosheets. Advanced Science, 2017, 4, 1600160.                                                | 5.6  | 191       |
| 161 | <i>In vivo</i> pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine, 2011, 6, 1327-1340.                                                                        | 1.7  | 190       |
| 162 | Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in<br>Tumor Models of Extravasation. Nano Letters, 2012, 12, 3369-3377.                                                                       | 4.5  | 189       |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials, 2015, 73, 214-230.                                                                                                                 | 5.7 | 189       |
| 164 | G-Quadruplex-Based Nanoscale Coordination Polymers to Modulate Tumor Hypoxia and Achieve<br>Nuclear-Targeted Drug Delivery for Enhanced Photodynamic Therapy. Nano Letters, 2018, 18, 6867-6875.                           | 4.5 | 187       |
| 165 | PEC-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials, 2013, 34, 9160-9170.                                                                | 5.7 | 185       |
| 166 | 2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics.<br>Theranostics, 2018, 8, 1648-1664.                                                                                      | 4.6 | 185       |
| 167 | Preparation of TiH1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy. Nature Communications, 2020, 11, 3712.                                                                               | 5.8 | 183       |
| 168 | Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016, 98, 23-30.                                                | 5.7 | 182       |
| 169 | Smart Injectable Hydrogels for Cancer Immunotherapy. Advanced Functional Materials, 2020, 30, 1902785.                                                                                                                     | 7.8 | 182       |
| 170 | Graphene-Based Nanocomposite As an Effective, Multifunctional, and Recyclable Antibacterial Agent.<br>ACS Applied Materials & Interfaces, 2014, 6, 8542-8548.                                                              | 4.0 | 179       |
| 171 | Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale, 2018, 10, 6981-6991.                                                                                                         | 2.8 | 178       |
| 172 | Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune<br>Checkpoint Blockade for Systemic Antitumor Therapy. Nano Letters, 2019, 19, 4287-4296.                                          | 4.5 | 170       |
| 173 | Multicolor In Vivo Imaging of Upconversion Nanoparticles with Emissions Tuned by Luminescence Resonance Energy Transfer. Journal of Physical Chemistry C, 2011, 115, 2686-2692.                                            | 1.5 | 169       |
| 174 | Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. Biomaterials, 2018, 155, 54-63.                                                      | 5.7 | 169       |
| 175 | Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. Nano Letters, 2018, 18, 182-189.                                                                            | 4.5 | 168       |
| 176 | Remotely Controlled Red Blood Cell Carriers for Cancer Targeting and Nearâ€Infrared Lightâ€Triggered<br>Drug Release in Combined Photothermal–Chemotherapy. Advanced Functional Materials, 2015, 25,<br>2386-2394.         | 7.8 | 167       |
| 177 | Organicâ€Baseâ€Ðriven Intercalation and Delamination for the Production of Functionalized Titanium<br>Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie, 2016,<br>128, 14789-14794. | 1.6 | 167       |
| 178 | FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials, 2015, 38, 1-9.                                                                              | 5.7 | 166       |
| 179 | Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. Journal of Controlled Release, 2017, 263, 79-89.         | 4.8 | 165       |
| 180 | Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination<br>Chemistry Reviews, 2016, 320-321, 100-117.                                                                            | 9.5 | 159       |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Cisplatinâ€Prodrugâ€Constructed Liposomes as a Versatile Theranostic Nanoplatform for Bimodal<br>Imaging Guided Combination Cancer Therapy. Advanced Functional Materials, 2016, 26, 2207-2217.                        | 7.8 | 159       |
| 182 | Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. Biomaterials, 2018, 181, 310-317.                                                         | 5.7 | 158       |
| 183 | Covalent Organic Polymers Based on Fluorinated Porphyrin as Oxygen Nanoshuttles for Tumor<br>Hypoxia Relief and Enhanced Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1804901.                       | 7.8 | 156       |
| 184 | Hyaluronidase with pHâ€responsive Dextran Modification as an Adjuvant Nanomedicine for Enhanced<br>Photodynamicâ€Immunotherapy of Cancer. Advanced Functional Materials, 2019, 29, 1902440.                            | 7.8 | 156       |
| 185 | Core–shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation.<br>Nano Research, 2016, 9, 3267-3278.                                                                                  | 5.8 | 155       |
| 186 | Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for<br>Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. ACS Nano, 2020, 14, 1586-1599.                 | 7.3 | 155       |
| 187 | Nearâ€Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy. Advanced Functional Materials, 2013, 23, 6059-6067.                                                       | 7.8 | 150       |
| 188 | Smart pHâ€Responsive Nanocarriers Based on Nanoâ€Graphene Oxide for Combined Chemo―and<br>Photothermal Therapy Overcoming Drug Resistance. Advanced Healthcare Materials, 2014, 3, 1261-1271.                          | 3.9 | 150       |
| 189 | Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34, 3002-3009.                                                                                                 | 5.7 | 149       |
| 190 | Bimetallic Oxide MnMoO <sub>X</sub> Nanorods for in Vivo Photoacoustic Imaging of GSH and<br>Tumor-Specific Photothermal Therapy. Nano Letters, 2018, 18, 6037-6044.                                                   | 4.5 | 146       |
| 191 | Endosomal pH-Activatable Poly(ethylene oxide)- <i>graft</i> -Doxorubicin Prodrugs: Synthesis, Drug<br>Release, and Biodistribution in Tumor-Bearing Mice. Biomacromolecules, 2011, 12, 1460-1467.                      | 2.6 | 145       |
| 192 | Red Blood Cells as Smart Delivery Systems. Bioconjugate Chemistry, 2018, 29, 852-860.                                                                                                                                  | 1.8 | 144       |
| 193 | Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Science Advances, 2020, 6, eaba3546.                                                                               | 4.7 | 144       |
| 194 | Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie - International Edition,<br>2021, 60, 16763-16776.                                                                                               | 7.2 | 143       |
| 195 | Multifunctional Upconversion Nanoparticles for Dualâ€Modal Imagingâ€Guided Stem Cell Therapy under<br>Remote Magnetic Control. Advanced Functional Materials, 2013, 23, 272-280.                                       | 7.8 | 141       |
| 196 | Lightâ€Responsive, Singletâ€Oxygenâ€Triggered Onâ€Demand Drug Release from Photosensitizerâ€Doped<br>Mesoporous Silica Nanorods for Cancer Combination Therapy. Advanced Functional Materials, 2016,<br>26, 4722-4732. | 7.8 | 141       |
| 197 | Single-walled carbon nanotubes in biomedical imaging. Journal of Materials Chemistry, 2011, 21, 586-598.                                                                                                               | 6.7 | 139       |
| 198 | Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic<br>therapy against cancer. Nano Today, 2021, 39, 101170.                                                             | 6.2 | 138       |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Photoacoustic Imaging Guided Nearâ€Infrared Photothermal Therapy Using Highly Waterâ€Dispersible<br>Singleâ€Walled Carbon Nanohorns as Theranostic Agents. Advanced Functional Materials, 2014, 24,<br>6621-6628. | 7.8  | 137       |
| 200 | Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous<br>Silica Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 26630-26637.                                      | 4.0  | 136       |
| 201 | Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor<br>immune responses. Science Advances, 2020, 6, eaaz4204.                                                       | 4.7  | 136       |
| 202 | 2D MoS <sub>2</sub> Nanostructures for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, e1701158.                                                                                                 | 3.9  | 135       |
| 203 | Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials, 2012, 33, 4872-4881.                          | 5.7  | 134       |
| 204 | Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano<br>Research, 2016, 9, 3003-3017.                                                                                        | 5.8  | 134       |
| 205 | Redox-Sensitive Nanoscale Coordination Polymers for Drug Delivery and Cancer Theranostics. ACS<br>Applied Materials & Interfaces, 2017, 9, 23555-23563.                                                           | 4.0  | 134       |
| 206 | Visualization of Protease Activity In Vivo Using an Activatable Photo-Acoustic Imaging Probe Based on<br>CuS Nanoparticles. Theranostics, 2014, 4, 134-141.                                                       | 4.6  | 133       |
| 207 | Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. Nanoscale, 2014, 6, 9198.                                 | 2.8  | 132       |
| 208 | Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials, 2018, 181, 81-91.                                                       | 5.7  | 131       |
| 209 | Platinum Nanoparticles to Enable Electrodynamic Therapy for Effective Cancer Treatment. Advanced<br>Materials, 2019, 31, e1806803.                                                                                | 11.1 | 130       |
| 210 | Synthesis of Au–Fe <sub>3</sub> O <sub>4</sub> heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale, 2014, 6, 199-202.                             | 2.8  | 129       |
| 211 | Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Research, 2017, 10, 1200-1212.                                                                | 5.8  | 128       |
| 212 | Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection. Biomaterials, 2017, 127, 13-24.                                                      | 5.7  | 124       |
| 213 | Reactive Oxygen Species–Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for<br>Synergistic Photo/Chemodynamic Therapies. Advanced Functional Materials, 2019, 29, 1905013.                        | 7.8  | 124       |
| 214 | Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube<br>Raman tags in the near-infrared. Nano Research, 2010, 3, 222-233.                                              | 5.8  | 123       |
| 215 | ATPâ€Responsive Smart Hydrogel Releasing Immune Adjuvant Synchronized with Repeated Chemotherapy<br>or Radiotherapy to Boost Antitumor Immunity. Advanced Materials, 2021, 33, e2007910.                          | 11.1 | 123       |
| 216 | Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Molecular Immunology, 2008, 45, 3797-3803.                                              | 1.0  | 122       |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Fluorescent N-Doped Carbon Dots as <i>in Vitro</i> and <i>in Vivo</i> Nanothermometer. ACS Applied<br>Materials & Interfaces, 2015, 7, 27324-27330.                                                                           | 4.0 | 122       |
| 218 | Nano-Carbons as Theranostics. Theranostics, 2012, 2, 235-237.                                                                                                                                                                 | 4.6 | 121       |
| 219 | Mn <sup>2+</sup> -Doped Prussian Blue Nanocubes for Bimodal Imaging and Photothermal Therapy<br>with Enhanced Performance. ACS Applied Materials & Interfaces, 2015, 7, 11575-11582.                                          | 4.0 | 121       |
| 220 | Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. Biomaterials, 2020, 228, 119568.                                            | 5.7 | 121       |
| 221 | Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy<br>for Synergetic Photothermal Tumor Therapy. ACS Applied Materials & Interfaces, 2019, 11,<br>18133-18144.                    | 4.0 | 120       |
| 222 | Protamine Functionalized Singleâ€Walled Carbon Nanotubes for Stem Cell Labeling and In Vivo<br>Raman/Magnetic Resonance/Photoacoustic Tripleâ€Modal Imaging. Advanced Functional Materials, 2012,<br>22, 2363-2375.           | 7.8 | 119       |
| 223 | Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials, 2019, 207, 1-9.                                                                          | 5.7 | 118       |
| 224 | Calming Cytokine Storm in Pneumonia by Targeted Delivery of TPCA-1 Using Platelet-Derived<br>Extracellular Vesicles. Matter, 2020, 3, 287-301.                                                                                | 5.0 | 117       |
| 225 | Manganese Dioxide Coated WS <sub>2</sub> @Fe <sub>3</sub> O <sub>4</sub> /sSiO <sub>2</sub><br>Nanocomposites for pHâ€Responsive MR Imaging and Oxygenâ€Elevated Synergetic Therapy. Small, 2018, 14,<br>1702664.             | 5.2 | 116       |
| 226 | Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. Angewandte Chemie - International Edition, 2017, 56, 12991-12996.                                            | 7.2 | 115       |
| 227 | Renalâ€Clearable PEGylated Porphyrin Nanoparticles for Imageâ€Guided Photodynamic Cancer Therapy.<br>Advanced Functional Materials, 2017, 27, 1702928.                                                                        | 7.8 | 113       |
| 228 | Gold Nanorod-Cored Biodegradable Micelles as a Robust and Remotely Controllable Doxorubicin<br>Release System for Potent Inhibition of Drug-Sensitive and -Resistant Cancer Cells.<br>Biomacromolecules, 2013, 14, 2411-2419. | 2.6 | 112       |
| 229 | Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide<br>Labeling for Multimodal Tumor Imaging and Therapy. Theranostics, 2016, 6, 1833-1843.                                          | 4.6 | 112       |
| 230 | Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Research, 2015, 8, 751-764.                                                    | 5.8 | 110       |
| 231 | InÂvivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide.<br>Biomaterials, 2016, 104, 361-371.                                                                                        | 5.7 | 110       |
| 232 | Simultaneous isolation and detection of circulating tumor cells with a microfluidic<br>silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials, 2015, 54,<br>55-62.                             | 5.7 | 106       |
| 233 | Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. Biomaterials, 2013, 34, 8960-8967.                                                                                                             | 5.7 | 104       |
| 234 | The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery, 2015, 12,<br>601-612.                                                                                                                  | 2.4 | 104       |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined<br>Photodynamic Chemotherapy of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 14475-14482.                                                 | 4.0 | 104       |
| 236 | Fluorinated Polyethylenimine to Enable Transmucosal Delivery of Photosensitizerâ€Conjugated<br>Catalase for Photodynamic Therapy of Orthotopic Bladder Tumors Postintravesical Instillation.<br>Advanced Functional Materials, 2019, 29, 1901932. | 7.8 | 102       |
| 237 | Bottomâ€Up Preparation of Uniform Ultrathin Rhenium Disulfide Nanosheets for Imageâ€Guided<br>Photothermal Radiotherapy. Advanced Functional Materials, 2017, 27, 1700250.                                                                        | 7.8 | 100       |
| 238 | 2D magnetic titanium carbide MXene for cancer theranostics. Journal of Materials Chemistry B, 2018,<br>6, 3541-3548.                                                                                                                              | 2.9 | 99        |
| 239 | Tumorâ€pHâ€Responsive Dissociable Albumin–Tamoxifen Nanocomplexes Enabling Efficient Tumor<br>Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. Small, 2018, 14, e1803262.                                                 | 5.2 | 99        |
| 240 | Calcium Bisphosphonate Nanoparticles with Chelator-Free Radiolabeling to Deplete Tumor-Associated<br>Macrophages for Enhanced Cancer Radioisotope Therapy. ACS Nano, 2018, 12, 11541-11551.                                                       | 7.3 | 98        |
| 241 | Magnetic Targeting Enhanced Theranostic Strategy Based on Multimodal Imaging for Selective Ablation of Cancer. Advanced Functional Materials, 2014, 24, 2312-2321.                                                                                | 7.8 | 97        |
| 242 | Multifunctional <scp>MnO<sub>2</sub></scp> nanoparticles for tumor microenvironment<br>modulation and cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and<br>Nanobiotechnology, 2021, 13, e1720.                                    | 3.3 | 97        |
| 243 | Jâ€Aggregates of Organic Dye Molecules Complexed with Iron Oxide Nanoparticles for Imagingâ€Guided<br>Photothermal Therapy Under 915â€nm Light. Small, 2014, 10, 4362-4370.                                                                       | 5.2 | 96        |
| 244 | Biodegradable Nanoscale Coordination Polymers for Targeted Tumor Combination Therapy with Oxidative Stress Amplification. Advanced Functional Materials, 2020, 30, 1908865.                                                                       | 7.8 | 96        |
| 245 | Near-Infrared-Triggered <i>in Situ</i> Gelation System for Repeatedly Enhanced Photothermal<br>Brachytherapy with a Single Dose. ACS Nano, 2018, 12, 9412-9422.                                                                                   | 7.3 | 95        |
| 246 | Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials, 2017, 146, 40-48.                                                                                  | 5.7 | 94        |
| 247 | Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable<br>Nanoagents for Photothermal Cancer Therapy. Small, 2021, 17, e2007486.                                                                                | 5.2 | 94        |
| 248 | Nano-assemblies of J-aggregates based on a NIR dye as a multifunctional drug carrier for combination cancer therapy. Biomaterials, 2015, 57, 84-92.                                                                                               | 5.7 | 93        |
| 249 | Albuminâ€Templated Manganese Dioxide Nanoparticles for Enhanced Radioisotope Therapy. Small, 2017,<br>13, 1700640.                                                                                                                                | 5.2 | 92        |
| 250 | Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. Advanced Functional<br>Materials, 2018, 28, 1802540.                                                                                                                        | 7.8 | 92        |
| 251 | Functionalization of Graphene Oxide Generates a Unique Interface for Selective Serum Protein<br>Interactions. ACS Applied Materials & Interfaces, 2013, 5, 1370-1377.                                                                             | 4.0 | 91        |
| 252 | Sub-100Ânm hollow Au–Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy. Biomaterials, 2014, 35, 4099-4107.                                                                                  | 5.7 | 90        |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of<br><sup>64</sup> Cu and multimodal imaging-guided photothermal therapy. Nanoscale, 2017, 9, 12609-12617.       | 2.8  | 90        |
| 254 | Innovative Strategien für die photodynamische Therapie hypoxischer Tumore. Angewandte Chemie, 2018, 130, 11694-11704.                                                                                        | 1.6  | 90        |
| 255 | Nanoparticleâ€Mediated Delivery of Inhaled Immunotherapeutics for Treating Lung Metastasis. Advanced<br>Materials, 2021, 33, e2007557.                                                                       | 11.1 | 89        |
| 256 | Bioorthogonal Coordination Polymer Nanoparticles with Aggregationâ€Induced Emission for Deep<br>Tumorâ€Penetrating Radio―and Radiodynamic Therapy. Advanced Materials, 2021, 33, e2007888.                   | 11.1 | 89        |
| 257 | Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials, 2017, 148, 69-80.                           | 5.7  | 88        |
| 258 | Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity. Nanoscale, 2016, 8, 3785-3795.                                                            | 2.8  | 87        |
| 259 | Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy.<br>Bioactive Materials, 2022, 8, 409-419.                                                                   | 8.6  | 87        |
| 260 | Photothermal therapy by using titanium oxide nanoparticles. Nano Research, 2016, 9, 1236-1243.                                                                                                               | 5.8  | 86        |
| 261 | Upconversion Composite Nanoparticles for Tumor Hypoxia Modulation and Enhanced<br>Near-Infrared-Triggered Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10,<br>15494-15503.                | 4.0  | 86        |
| 262 | Reassembly of <sup>89</sup> Zr‣abeled Cancer Cell Membranes into Multicompartment<br>Membraneâ€Derived Liposomes for PETâ€Trackable Tumorâ€Targeted Theranostics. Advanced Materials, 2018,<br>30, e1704934. | 11.1 | 86        |
| 263 | MoS <sub>2</sub> -Based Nanoprobes for Detection of Silver Ions in Aqueous Solutions and Bacteria.<br>ACS Applied Materials & Interfaces, 2015, 7, 7526-7533.                                                | 4.0  | 85        |
| 264 | Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.                                                                                                  | 4.2  | 85        |
| 265 | Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for Synergistic Combined<br>Chemo-radioisotope Therapy of Cancer. Theranostics, 2017, 7, 614-623.                                                | 4.6  | 84        |
| 266 | Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. ACS Nano, 2019, 13, 13127-13135.                                                                                                   | 7.3  | 83        |
| 267 | Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel.<br>Journal of Materials Chemistry, 2011, 21, 5786.                                                        | 6.7  | 82        |
| 268 | Photosensitizerâ€Modified MnO <sub>2</sub> Nanoparticles to Enhance Photodynamic Treatment of Abscesses and Boost Immune Protection for Treated Mice. Small, 2020, 16, e2000589.                             | 5.2  | 82        |
| 269 | cRGD-directed, NIR-responsive and robust AuNR/PEG–PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. Journal of Controlled Release, 2014, 195, 63-71.                               | 4.8  | 81        |
| 270 | NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Research, 2018, 11, 5657-5669.                                                                                       | 5.8  | 81        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Bimetallic Oxide FeWO <i><sub>X</sub></i> Nanosheets as Multifunctional Cascade Bioreactors for<br>Tumor Microenvironmentâ€Modulation and Enhanced Multimodal Cancer Therapy. Advanced Functional<br>Materials, 2020, 30, 2002753. | 7.8 | 80        |
| 272 | V-TiO2 nanospindles with regulating tumor microenvironment performance for enhanced sonodynamic cancer therapy. Applied Physics Reviews, 2020, 7, .                                                                                | 5.5 | 79        |
| 273 | Allâ€inâ€One Theranostic Nanoplatform Based on Hollow TaOx for Chelatorâ€Free Labeling Imaging, Drug<br>Delivery, and Synergistically Enhanced Radiotherapy. Advanced Functional Materials, 2016, 26,<br>8243-8254.                | 7.8 | 78        |
| 274 | Albumin-templated biomineralizing growth of composite nanoparticles as smart nano-theranostics for enhanced radiotherapy of tumors. Nanoscale, 2017, 9, 14826-14835.                                                               | 2.8 | 77        |
| 275 | Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Research, 2019, 12, 1307-1312.                                                       | 5.8 | 77        |
| 276 | Biomimetic Copper Sulfide for Chemoâ€Radiotherapy: Enhanced Uptake and Reduced Efflux of<br>Nanoparticles for Tumor Cells under Ionizing Radiation. Advanced Functional Materials, 2018, 28,<br>1705161.                           | 7.8 | 75        |
| 277 | Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. Biomaterials, 2020, 255, 120190.                                                                                        | 5.7 | 75        |
| 278 | Ultrabright and ultrastable near-infrared dye nanoparticles for inÂvitro and inÂvivo bioimaging.<br>Biomaterials, 2012, 33, 7803-7809.                                                                                             | 5.7 | 74        |
| 279 | Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Research, 2018, 11, 3244-3257.                                                                  | 5.8 | 74        |
| 280 | Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. CheM, 2022, 8, 268-286.                                                                                                                                   | 5.8 | 74        |
| 281 | Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free<br><sup>64</sup> Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer. ACS Nano, 2017, 11,<br>9103-9111.                                      | 7.3 | 73        |
| 282 | One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials, 2018, 156, 121-133.                                                                      | 5.7 | 73        |
| 283 | Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment. Coordination Chemistry Reviews, 2019, 398, 113009.                                                                     | 9.5 | 73        |
| 284 | Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced<br>Sonodynamic/Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 52370-52382.                                                      | 4.0 | 73        |
| 285 | Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic<br>Therapy. Biomaterials, 2020, 255, 120202.                                                                                           | 5.7 | 73        |
| 286 | PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1077-1088.                                  | 1.7 | 72        |
| 287 | VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide inÂvivo.<br>Biomaterials, 2015, 39, 39-46.                                                                                                      | 5.7 | 72        |
| 288 | Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nature Communications, 2021, 12, 4299.                                                         | 5.8 | 72        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Mesenchymal Stem Cellâ€Derived Extracellular Vesicles with High PDâ€L1 Expression for Autoimmune<br>Diseases Treatment. Advanced Materials, 2022, 34, e2106265.                                | 11.1 | 72        |
| 290 | Au@MnS@ZnS Core/Shell/Shell Nanoparticles for Magnetic Resonance Imaging and Enhanced Cancer Radiation Therapy. ACS Applied Materials & amp; Interfaces, 2016, 8, 9557-9564.                   | 4.0  | 70        |
| 291 | Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale, 2016, 8, 15323-15339.                               | 2.8  | 70        |
| 292 | Cerenkov Luminescence-Induced NO Release from 32P-Labeled ZnFe(CN)5NO Nanosheets to Enhance<br>Radioisotope-Immunotherapy. Matter, 2019, 1, 1061-1076.                                         | 5.0  | 70        |
| 293 | Albumin-Assisted Synthesis of Ultrasmall FeS <sub>2</sub> Nanodots for Imaging-Guided<br>Photothermal Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10,<br>332-340. | 4.0  | 69        |
| 294 | Oxygenâ€Deficient Bimetallic Oxide FeWO <sub>X</sub> Nanosheets as Peroxidase‣ike Nanozyme for<br>Sensing Cancer via Photoacoustic Imaging. Small, 2020, 16, e2003496.                         | 5.2  | 68        |
| 295 | Multilayer Dual-Polymer-Coated Upconversion Nanoparticles for Multimodal Imaging and<br>Serum-Enhanced Gene Delivery. ACS Applied Materials & Interfaces, 2013, 5, 10381-10388.                | 4.0  | 67        |
| 296 | Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. Journal of Controlled Release, 2019, 304, 233-241.              | 4.8  | 66        |
| 297 | An implantable blood clot–based immune niche for enhanced cancer vaccination. Science Advances, 2020, 6, .                                                                                     | 4.7  | 66        |
| 298 | Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Research, 2021, 14, 212-221.                                   | 5.8  | 66        |
| 299 | Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte<br>Chemie - International Edition, 2017, 56, 2889-2892.                                         | 7.2  | 65        |
| 300 | Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Research, 2014, 7, 1327-1336.      | 5.8  | 64        |
| 301 | Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Research, 2016, 9, 139-148.                                                   | 5.8  | 64        |
| 302 | Aptamer-Based Logic Computing Reaction on Living Cells to Enable Non-Antibody Immune Checkpoint<br>Blockade Therapy. Journal of the American Chemical Society, 2021, 143, 8391-8401.           | 6.6  | 64        |
| 303 | Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system. Biomaterials Science, 2017, 5, 331-340.        | 2.6  | 63        |
| 304 | pHâ€Sensitive Dissociable Nanoscale Coordination Polymers with Drug Loading for Synergistically<br>Enhanced Chemoradiotherapy. Advanced Functional Materials, 2017, 27, 1703832.               | 7.8  | 63        |
| 305 | Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local<br>Administration. Nano Letters, 2020, 20, 6763-6773.                                             | 4.5  | 63        |
| 306 | Carrier-free, functionalized drug nanoparticles for targeted drug delivery. Chemical<br>Communications, 2012, 48, 8120.                                                                        | 2.2  | 62        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Drug‣oaded Mesoporous Tantalum Oxide Nanoparticles for Enhanced Synergetic Chemoradiotherapy<br>with Reduced Systemic Toxicity. Small, 2017, 13, 1602869.                                                               | 5.2 | 62        |
| 308 | Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials, 2016, 100, 101-109.                                         | 5.7 | 61        |
| 309 | Advances in imaging strategies for in vivo tracking of exosomes. Wiley Interdisciplinary Reviews:<br>Nanomedicine and Nanobiotechnology, 2020, 12, e1594.                                                               | 3.3 | 61        |
| 310 | Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and<br>Individualized Cancer Immunotherapy. Nano Letters, 2021, 21, 1228-1237.                                                       | 4.5 | 61        |
| 311 | Highly Effective Radioisotope Cancer Therapy with a Non-Therapeutic Isotope Delivered and Sensitized by Nanoscale Coordination Polymers. ACS Nano, 2018, 12, 7519-7528.                                                 | 7.3 | 59        |
| 312 | In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Biomaterials, 2019, 224, 119490.                                       | 5.7 | 59        |
| 313 | Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale, 2016, 8, 12683-12692.                                                              | 2.8 | 58        |
| 314 | Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies. Biomaterials, 2019, 197, 368-379.                             | 5.7 | 58        |
| 315 | Photoactivated H <sub>2</sub> Nanogenerator for Enhanced Chemotherapy of Bladder Cancer. ACS<br>Nano, 2020, 14, 8135-8148.                                                                                              | 7.3 | 58        |
| 316 | Fluorinated Polymer Mediated Transmucosal Peptide Delivery for Intravesical Instillation Therapy of<br>Bladder Cancer. Small, 2019, 15, e1900936.                                                                       | 5.2 | 57        |
| 317 | DNAâ€Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive<br>Immunotherapy. Angewandte Chemie - International Edition, 2020, 59, 14842-14853.                                | 7.2 | 57        |
| 318 | Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation. Biomaterials, 2021, 268, 120550.                                                                                                    | 5.7 | 57        |
| 319 | Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and<br>tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. Biomaterials, 2022, 280, 121250.                | 5.7 | 57        |
| 320 | Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation<br>exchange for multimodal imaging and synergistic thermo-radiotherapy. NPG Asia Materials, 2017, 9,<br>e344-e344. | 3.8 | 56        |
| 321 | Surfaceâ€Engineering of Red Blood Cells as Artificial Antigen Presenting Cells Promising for Cancer<br>Immunotherapy. Small, 2017, 13, 1701864.                                                                         | 5.2 | 56        |
| 322 | Collagenase-Encapsulated pH-Responsive Nanoscale Coordination Polymers for Tumor<br>Microenvironment Modulation and Enhanced Photodynamic Nanomedicine. ACS Applied Materials<br>& Interfaces, 2018, 10, 43493-43502.   | 4.0 | 56        |
| 323 | Two-dimensional silicene composite nanosheets enable exogenous/endogenous-responsive and synergistic hyperthermia-augmented catalytic tumor theranostics. Biomaterials, 2020, 256, 120206.                              | 5.7 | 55        |
| 324 | Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Advanced Drug Delivery Reviews, 2021, 179, 114004.                                                                 | 6.6 | 55        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nanoscale, 2015, 7, 16399-16416.                                   | 2.8  | 54        |
| 326 | Rheniumâ€188 Labeled Tungsten Disulfide Nanoflakes for Selfâ€Sensitized, Nearâ€Infrared Enhanced<br>Radioisotope Therapy. Small, 2016, 12, 3967-3975.                                                              | 5.2  | 54        |
| 327 | Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. Biomaterials, 2019, 219, 119374.                                                               | 5.7  | 54        |
| 328 | Tumor microenvironment (TME)-activatable circular aptamer-PEG as an effective<br>hierarchical-targeting molecular medicine for photodynamic therapy. Biomaterials, 2020, 246, 119971.                              | 5.7  | 54        |
| 329 | Coordination Polymer oated CaCO <sub>3</sub> Reinforces Radiotherapy by Reprogramming the<br>Immunosuppressive Metabolic Microenvironment. Advanced Materials, 2022, 34, e2106520.                                 | 11.1 | 54        |
| 330 | High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model. Nano Today, 2013, 8, 126-137.                                                         | 6.2  | 53        |
| 331 | Photosensitizer Decorated Red Blood Cells as an Ultrasensitive Light-Responsive Drug Delivery<br>System. ACS Applied Materials & Interfaces, 2017, 9, 5855-5863.                                                   | 4.0  | 53        |
| 332 | In Situ Formed Fibrin Scaffold with Cyclophosphamide to Synergize with Immune Checkpoint Blockade<br>for Inhibition of Cancer Recurrence after Surgery. Advanced Functional Materials, 2020, 30, 1906922.          | 7.8  | 53        |
| 333 | A general in-situ reduction method to prepare core-shell liquid-metal / metal nanoparticles for photothermally enhanced catalytic cancer therapy. Biomaterials, 2021, 277, 121125.                                 | 5.7  | 52        |
| 334 | Bioinspired tumor-homing nanosystem for precise cancer therapy via reprogramming of tumor-associated macrophages. NPG Asia Materials, 2018, 10, 1002-1015.                                                         | 3.8  | 51        |
| 335 | Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy. Applied<br>Materials Today, 2020, 18, 100464.                                                                                      | 2.3  | 51        |
| 336 | Readout-segmented echo-planar imaging in the evaluation of sinonasal lesions: A comprehensive<br>comparison of image quality in single-shot echo-planar imaging. Magnetic Resonance Imaging, 2016, 34,<br>166-172. | 1.0  | 50        |
| 337 | Mechanically active adhesive and immune regulative dressings for wound closure. Matter, 2021, 4, 2985-3000.                                                                                                        | 5.0  | 50        |
| 338 | Smart Nanomedicine to Enable Crossing Blood–Brain Barrier Delivery of Checkpoint Blockade<br>Antibody for Immunotherapy of Glioma. ACS Nano, 2022, 16, 664-674.                                                    | 7.3  | 49        |
| 339 | Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale, 2014, 6, 14903-14910.                                                              | 2.8  | 48        |
| 340 | Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease. ACS Applied Materials & Interfaces, 2016, 8, 17955-17963.                          | 4.0  | 48        |
| 341 | lodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy. Biomaterials Science, 2017, 5, 1828-1835.                                       | 2.6  | 48        |
| 342 | Facile preparation of uniform FeSe <sub>2</sub> nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. Nanoscale, 2015, 7, 20757-20768.                                                       | 2.8  | 47        |

| #   | Article                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Surfactant‧tripped Micelles of Near Infrared Dye and Paclitaxel for Photoacoustic Imaging Guided<br>Photothermal hemotherapy. Small, 2018, 14, e1802991.                                  | 5.2  | 47        |
| 344 | Ultrasound-Responsive Conversion of Microbubbles to Nanoparticles to Enable Background-Free in<br>Vivo Photoacoustic Imaging. Nano Letters, 2019, 19, 8109-8117.                          | 4.5  | 47        |
| 345 | The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Research, 2020, 13, 564-569.                                                                | 5.8  | 46        |
| 346 | CaCO3-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy. Nano-Micro Letters, 2021, 13, 29.                                          | 14.4 | 46        |
| 347 | Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon, 2012, 50, 3008-3014.           | 5.4  | 45        |
| 348 | Degradable Vanadium Disulfide Nanostructures with Unique Optical and Magnetic Functions for Cancer Theranostics. Angewandte Chemie, 2017, 129, 13171-13176.                               | 1.6  | 45        |
| 349 | Core–shell TaOx@MnO <sub>2</sub> nanoparticles as a nano-radiosensitizer for effective cancer<br>radiotherapy. Journal of Materials Chemistry B, 2018, 6, 2250-2257.                      | 2.9  | 45        |
| 350 | Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment. Biomaterials, 2022, 281, 121332.                     | 5.7  | 44        |
| 351 | Immunosonodynamic Therapy Designed with Activatable Sonosensitizer and Immune Stimulant<br>Imiquimod. ACS Nano, 2022, 16, 10979-10993.                                                    | 7.3  | 43        |
| 352 | Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale, 2017, 9, 4826-4834. | 2.8  | 42        |
| 353 | Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer. Nanoscale, 2018, 10, 13976-13985.                                                  | 2.8  | 42        |
| 354 | Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Research, 2020, 13, 2209-2215.                                | 5.8  | 42        |
| 355 | Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth. Nature Communications, 2022, 13, 2336.                                        | 5.8  | 42        |
| 356 | Inorganic nanomaterials for tumor angiogenesis imaging. European Journal of Nuclear Medicine and<br>Molecular Imaging, 2010, 37, 147-163.                                                 | 3.3  | 41        |
| 357 | In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a<br>drug delivery system. Journal of Materials Chemistry B, 2014, 2, 4726-4732.           | 2.9  | 41        |
| 358 | Injectable Nonmagnetic Liquid Metal for Eddyâ€Thermal Ablation of Tumors under Alternating Magnetic<br>Field. Small Methods, 2020, 4, 2000147.                                            | 4.6  | 41        |
| 359 | Ultra-small natural product based coordination polymer nanodots for acute kidney injury relief.<br>Materials Horizons, 2021, 8, 1314-1322.                                                | 6.4  | 41        |
| 360 | Nanovaccines with cell-derived components for cancer immunotherapy. Advanced Drug Delivery<br>Reviews, 2022, 182, 114107.                                                                 | 6.6  | 41        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Targeting Endogenous Hydrogen Peroxide at Bone Defects Promotes Bone Repair. Advanced Functional<br>Materials, 2022, 32, .                                                                                                 | 7.8 | 41        |
| 362 | Ultra <b>-</b> small Pyropheophorbide <b>-</b> a Nanodots for Near <b>-</b> infrared<br>Fluorescence/Photoacoustic Imaging-guided Photodynamic Therapy. Theranostics, 2020, 10, 62-73.                                     | 4.6 | 40        |
| 363 | Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Research, 2020, 13, 3057-3067. | 5.8 | 40        |
| 364 | Platinum nanoworms for imaging-guided combined cancer therapy in the second near-infrared window. Journal of Materials Chemistry B, 2018, 6, 5069-5079.                                                                    | 2.9 | 39        |
| 365 | Biomaterial-mediated internal radioisotope therapy. Materials Horizons, 2021, 8, 1348-1366.                                                                                                                                | 6.4 | 39        |
| 366 | Novel Multifunctional Stimuli-Responsive Nanoparticles for Synergetic Chemo–Photothermal<br>Therapy of Tumors. ACS Applied Materials & Interfaces, 2021, 13, 28802-28817.                                                  | 4.0 | 39        |
| 367 | Equipping Cancer Cell Membrane Vesicles with Functional DNA as a Targeted Vaccine for Cancer<br>Immunotherapy. Nano Letters, 2021, 21, 9410-9418.                                                                          | 4.5 | 39        |
| 368 | Specific Detection and Simultaneously Localized Photothermal Treatment of Cancer Cells Using<br>Layer-by-Layer Assembled Multifunctional Nanoparticles. ACS Applied Materials & Interfaces, 2014,<br>6, 6443-6452.         | 4.0 | 38        |
| 369 | Highâ€contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals.<br>Magnetic Resonance in Medicine, 2009, 62, 1497-1509.                                                                    | 1.9 | 37        |
| 370 | In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe.<br>Quantitative Imaging in Medicine and Surgery, 2018, 8, 151-160.                                                     | 1.1 | 37        |
| 371 | Patterned Substrates of Nano-Graphene Oxide Mediating Highly Localized and Efficient Gene Delivery.<br>ACS Applied Materials & Interfaces, 2014, 6, 5900-5907.                                                             | 4.0 | 36        |
| 372 | Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating<br>the Beclin 1/Bcl-2/VPS34 complex. International Journal of Nanomedicine, 2015, 10, 207.                                 | 3.3 | 36        |
| 373 | Magnetic Fieldâ€Enhanced Photothermal Ablation of Tumor Sentinel Lymph Nodes to Inhibit Cancer<br>Metastasis. Small, 2015, 11, 4856-4863.                                                                                  | 5.2 | 36        |
| 374 | Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. Biomaterials, 2016, 100, 91-100.                                                            | 5.7 | 36        |
| 375 | Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. Biomaterials, 2021, 269, 120455.                                                    | 5.7 | 36        |
| 376 | Graphene Oxide Selectively Enhances Thermostability of Trypsin. ACS Applied Materials &<br>Interfaces, 2015, 7, 12270-12277.                                                                                               | 4.0 | 35        |
| 377 | Biodegradable magnesium alloy with eddy thermal effect for effective and accurate magnetic hyperthermia ablation of tumors. National Science Review, 2021, 8, nwaa122.                                                     | 4.6 | 35        |
| 378 | Reactive Oxygen Species Scavenging Sutures for Enhanced Wound Sealing and Repair. Small<br>Structures, 2021, 2, 2100002.                                                                                                   | 6.9 | 35        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Dualâ€Polymerâ€Functionalized Nanoscale Graphene Oxide as a Highly Effective Gene Transfection Agent<br>for Insect Cells with Cellâ€Typeâ€Dependent Cellular Uptake Mechanisms. Particle and Particle Systems<br>Characterization, 2013, 30, 794-803. | 1.2 | 34        |
| 380 | Postoperative executive function in adult moyamoya disease: a preliminary study of its functional anatomy and behavioral correlates. Journal of Neurosurgery, 2017, 126, 527-536.                                                                     | 0.9 | 34        |
| 381 | Chelator-Free Labeling of Metal Oxide Nanostructures with Zirconium-89 for Positron Emission<br>Tomography Imaging. ACS Nano, 2017, 11, 12193-12201.                                                                                                  | 7.3 | 34        |
| 382 | Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging. Journal of Materials Chemistry B, 2015, 3, 2786-2800.                                                   | 2.9 | 33        |
| 383 | Nanoparticleâ€Embedded Electrospun Fiber–Covered Stent to Assist Intraluminal Photodynamic<br>Treatment of Oesophageal Cancer. Small, 2019, 15, e1904979.                                                                                             | 5.2 | 33        |
| 384 | Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. ACS Applied Materials & amp; Interfaces, 2020, 12, 50248-50259.                                                       | 4.0 | 33        |
| 385 | Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. Nanoscale Horizons, 2020, 5, 857-868.                                                                                                                                          | 4.1 | 33        |
| 386 | DNA-Based MXFs to Enhance Radiotherapy and Stimulate Robust Antitumor Immune Responses. Nano<br>Letters, 2022, 22, 2826-2834.                                                                                                                         | 4.5 | 33        |
| 387 | A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma.<br>International Journal of Nanomedicine, 2018, Volume 13, 4433-4443.                                                                                         | 3.3 | 32        |
| 388 | Hybrid Protein Nanoâ€Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodineâ€131<br>Delivery for Enhanced Radionuclide Therapy. Small, 2019, 15, e1903628.                                                                           | 5.2 | 32        |
| 389 | Take Immune Cells Back on Track: Glycopolymer-Engineered Tumor Cells for Triggering Immune<br>Response. ACS Macro Letters, 2019, 8, 337-344.                                                                                                          | 2.3 | 32        |
| 390 | Stem Cell Labeling and Tracking with Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 1006-1017.                                                                                                                              | 1.2 | 31        |
| 391 | Facile Preparation of Multifunctional WS <sub>2</sub> /WO <i><sub>x</sub></i> Nanodots for<br>Chelator-Free <sup>89</sup> Zr-Labeling and In Vivo PET Imaging. Small, 2016, 12, 5750-5758.                                                            | 5.2 | 31        |
| 392 | NIR organic dyes based on phenazine-cyanine for photoacoustic imaging-guided photothermal therapy.<br>Journal of Materials Chemistry B, 2018, 6, 7420-7426.                                                                                           | 2.9 | 31        |
| 393 | Intelligent protein-coated bismuth sulfide and manganese oxide nanocomposites obtained by<br>biomineralization for multimodal imaging-guided enhanced tumor therapy. Journal of Materials<br>Chemistry B, 2019, 7, 5170-5181.                         | 2.9 | 31        |
| 394 | Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. Journal of Controlled Release, 2022, 348, 346-356.                                                                                                | 4.8 | 31        |
| 395 | Carrier-free, water dispersible and highly luminescent dye nanoparticles for targeted cell imaging.<br>Nanoscale, 2012, 4, 5373.                                                                                                                      | 2.8 | 30        |
| 396 | Carbon nanotubes in biology and medicine: An overview. Science Bulletin, 2012, 57, 167-180.                                                                                                                                                           | 1.7 | 30        |

| #   | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Supramolecular self-assembly enhanced europium(iii) luminescence under visible light. Soft Matter, 2014, 10, 4686.                                                                                          | 1.2  | 29        |
| 398 | Labelâ€Free, Quantitative Imaging of MoS <sub>2</sub> â€Nanosheets in Live Cells with Simultaneous<br>Stimulated Raman Scattering and Transient Absorption Microscopy. Advanced Biology, 2017, 1, e1700013. | 3.0  | 29        |
| 399 | High-yield synthesis of gold bipyramids for in vivo CT imaging and photothermal cancer therapy with enhanced thermal stability. Chemical Engineering Journal, 2019, 378, 122025.                            | 6.6  | 29        |
| 400 | Polyoxomolybdate (POM) nanoclusters with radiosensitizing and scintillating properties for low dose X-ray inducible radiation-radiodynamic therapy. Nanoscale Horizons, 2020, 5, 109-118.                   | 4.1  | 29        |
| 401 | Immunosuppressive Nanoparticles for Management of Immune-Related Adverse Events in Liver. ACS Nano, 2021, 15, 9111-9125.                                                                                    | 7.3  | 29        |
| 402 | In Vivo Biodistribution, Pharmacokinetics, and Toxicology of Carbon Nanotubes. Current Drug<br>Metabolism, 2012, 13, 1057-1067.                                                                             | 0.7  | 28        |
| 403 | A versatile Fe <sub>3</sub> O <sub>4</sub> based platform via iron-catalyzed AGET ATRP: towards various multifunctional nanomaterials. Polymer Chemistry, 2014, 5, 638-645.                                 | 1.9  | 28        |
| 404 | Functionalized graphene oxide in microbial engineering: An effective stimulator for bacterial growth.<br>Carbon, 2016, 103, 172-180.                                                                        | 5.4  | 28        |
| 405 | Guiding Drug Through Interrupted Bloodstream for Potentiated Thrombolysis by Câ€Shaped Magnetic<br>Actuation System In Vivo. Advanced Materials, 2021, 33, e2105351.                                        | 11.1 | 28        |
| 406 | Recent advances in functional nanomaterials for X-ray triggered cancer therapy. Progress in Natural<br>Science: Materials International, 2020, 30, 567-576.                                                 | 1.8  | 27        |
| 407 | Albumin-Based Therapeutics Capable of Glutathione Consumption and Hydrogen Peroxide Generation for Synergetic Chemodynamic and Chemotherapy of Cancer. ACS Nano, 2022, 16, 2319-2329.                       | 7.3  | 27        |
| 408 | Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging.<br>Journal of Materials Chemistry B, 2013, 1, 3144.                                                      | 2.9  | 26        |
| 409 | Proteinâ€Engineered Biomaterials for Cancer Theranostics. Advanced Healthcare Materials, 2018, 7, e1800913.                                                                                                 | 3.9  | 26        |
| 410 | Surfactant-stripped J-aggregates of azaBODIPY derivatives: All-in-one phototheranostics in the second near infrared window. Journal of Controlled Release, 2020, 326, 256-264.                              | 4.8  | 26        |
| 411 | Protein-drug conjugate programmed by pH-reversible linker for tumor hypoxia relief and enhanced cancer combination therapy. International Journal of Pharmaceutics, 2020, 582, 119321.                      | 2.6  | 26        |
| 412 | Metallic oxide nanocrystals with near-infrared plasmon resonance for efficient, stable and<br>biocompatible photothermal cancer therapy. Journal of Materials Chemistry B, 2017, 5, 7393-7402.              | 2.9  | 25        |
| 413 | Perfluorocarbon nanodroplets stabilized with cisplatin-prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer. Nanoscale, 2020, 12, 14764-14774.                    | 2.8  | 25        |
| 414 | Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy. Biomaterials, 2022, 283, 121428.                                                        | 5.7  | 25        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | Magnetic PEGylated Pt3Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study. Nanoscale, 2013, 5, 12464.                                                                                                   | 2.8  | 23        |
| 416 | Cell-Penetrating Peptide Enhanced Antigen Presentation for Cancer Immunotherapy. Bioconjugate<br>Chemistry, 2019, 30, 2115-2126.                                                                                                                   | 1.8  | 23        |
| 417 | Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced<br>Cancer Treatment. Advanced Healthcare Materials, 2021, 10, e2001167.                                                                               | 3.9  | 23        |
| 418 | Biological membrane derived nanomedicines for cancer therapy. Science China Chemistry, 2021, 64, 719-733.                                                                                                                                          | 4.2  | 23        |
| 419 | Facile Fabrication of Biocompatible and Tunable Multifunctional Nanomaterials via Iron-Mediated<br>Atom Transfer Radical Polymerization with Activators Generated by Electron Transfer. ACS Applied<br>Materials & Interfaces, 2013, 5, 9663-9669. | 4.0  | 22        |
| 420 | Controlled release of immunotherapeutics for enhanced cancer immunotherapy after local delivery.<br>Journal of Controlled Release, 2021, 329, 882-893.                                                                                             | 4.8  | 22        |
| 421 | Injectable Immunotherapeutic Thermogel for Enhanced Immunotherapy Post Tumor Radiofrequency<br>Ablation. Small, 2021, 17, e2104773.                                                                                                                | 5.2  | 22        |
| 422 | Bifunctional nanoparticles with magnetism and NIR fluorescence: controlled synthesis from combination of AGET ATRP and †click' reaction. Nanotechnology, 2014, 25, 045602.                                                                         | 1.3  | 21        |
| 423 | Renal Clearable Ru-based Coordination Polymer Nanodots for Photoacoustic Imaging Guided Cancer<br>Therapy. Theranostics, 2019, 9, 8266-8276.                                                                                                       | 4.6  | 21        |
| 424 | Thermoâ€Triggered In Situ Chitosanâ€Based Gelation System for Repeated and Enhanced Sonodynamic<br>Therapy Post a Single Injection. Advanced Healthcare Materials, 2021, 10, e2001208.                                                             | 3.9  | 21        |
| 425 | DNA Engineered Lymphocyte-Based Homologous Targeting Artificial Antigen-Presenting Cells for<br>Personalized Cancer Immunotherapy. Journal of the American Chemical Society, 2022, 144, 7634-7645.                                                 | 6.6  | 21        |
| 426 | Carbon nanotubes for in vivo cancer nanotechnology. Science China Chemistry, 2010, 53, 2217-2225.                                                                                                                                                  | 4.2  | 20        |
| 427 | The advantage of reversible coordination polymers in producing visible light sensitized Eu(iii)<br>emissions over EDTA via excluding water from the coordination sphere. Physical Chemistry Chemical<br>Physics, 2013, 15, 16641.                  | 1.3  | 20        |
| 428 | Vitamin C supramolecular hydrogel for enhanced cancer immunotherapy. Biomaterials, 2022, 287, 121673.                                                                                                                                              | 5.7  | 20        |
| 429 | Imaging: PEGylated WS2Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual-Modal<br>CT/Photoacoustic Imaging Guided Photothermal Therapy (Adv. Mater. 12/2014). Advanced Materials,<br>2014, 26, 1794-1794.                          | 11.1 | 19        |
| 430 | Chemiluminescent Nanosystems for Imaging Cancer Chemodynamic Therapy. CheM, 2020, 6, 2127-2129.                                                                                                                                                    | 5.8  | 19        |
| 431 | Coordination Polymers Integrating Metalloimmunology with Immune Modulation to Elicit Robust Cancer Chemoimmunotherapy. CCS Chemistry, 2021, 3, 2629-2642.                                                                                          | 4.6  | 19        |
| 432 | Poly-(allylamine hydrochloride)-coated but not poly(acrylic acid)-coated upconversion nanoparticles<br>induce autophagy and apoptosis in human blood cancer cells. Journal of Materials Chemistry B, 2015, 3,<br>5769-5776.                        | 2.9  | 18        |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Photodynamic creation of artificial tumor microenvironments to collectively facilitate<br>hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes. Chemical Engineering<br>Journal, 2021, 414, 128731.                                                       | 6.6 | 18        |
| 434 | Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant. Nanoscale, 2015, 7, 19282-19292.                                                                                                                                    | 2.8 | 17        |
| 435 | Radiotherapy assisted with biomaterials to trigger antitumor immunity. Chinese Chemical Letters, 2022, 33, 4169-4174.                                                                                                                                                            | 4.8 | 17        |
| 436 | Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform.<br>Nanotechnology, 2013, 24, 015103.                                                                                                                                          | 1.3 | 16        |
| 437 | Controllable growth of Au nanostructures onto MoS <sub>2</sub> nanosheets for dual-modal<br>imaging and photothermal–radiation combined therapy. Nanoscale, 2019, 11, 22788-22795.                                                                                               | 2.8 | 16        |
| 438 | Redox chemistry-enabled stepwise surface dual nanoparticle engineering of 2D MXenes for<br>tumor-sensitive <i>T</i> <sub>1</sub> and <i>T</i> <sub>2</sub> MRI-guided photonic breast-cancer<br>hyperthermia in the NIR-II biowindow. Biomaterials Science, 2022, 10, 1562-1574. | 2.6 | 16        |
| 439 | Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. Carbon, 2018, 129, 495-503.                                                                                                                            | 5.4 | 15        |
| 440 | CaCO <sub>3</sub> â€Encapuslated Microspheres for Enhanced Transhepatic Arterial Embolization<br>Treatment of Hepatocellular Carcinoma. Advanced Healthcare Materials, 2021, 10, e2100748.                                                                                       | 3.9 | 15        |
| 441 | Research Spotlight: Upconversion nanoparticles for potential cancer theranostics. Therapeutic Delivery, 2011, 2, 1235-1239.                                                                                                                                                      | 1.2 | 14        |
| 442 | Molecular domino reactor built by automated modular synthesis for cancer treatment. Theranostics, 2020, 10, 4030-4041.                                                                                                                                                           | 4.6 | 14        |
| 443 | Antitumor Agents Based on Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 16901-16914.                                                                                                                                                                                   | 1.6 | 14        |
| 444 | Fluorinated Chitosan Mediated Synthesis of Copper Selenide Nanoparticles with Enhanced<br>Penetration for Second Nearâ€Infrared Photothermal Therapy of Bladder Cancer. Advanced<br>Therapeutics, 2021, 4, 2100043.                                                              | 1.6 | 14        |
| 445 | Synthesis of a UCNPs@SiO <sub>2</sub> @gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. RSC Advances, 2016, 6, 98968-98974.                                                                                                                            | 1.7 | 13        |
| 446 | Lipid-Coated CaCO <sub>3</sub> Nanoparticles as a Versatile pH-Responsive Drug Delivery Platform to<br>Enable Combined Chemotherapy of Breast Cancer. ACS Applied Bio Materials, 2022, 5, 1194-1201.                                                                             | 2.3 | 13        |
| 447 | A Versatile â€~Click Chemistry' Route to Sizeâ€Restricted, Robust, and Functionalizable Hydrophilic<br>Nanocrystals. Small, 2015, 11, 1644-1648.                                                                                                                                 | 5.2 | 12        |
| 448 | Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing<br>Capabilities as a Therapeutic Nanoplatform. Angewandte Chemie, 2016, 128, 2162-2166.                                                                                                   | 1.6 | 12        |
| 449 | Transmucosal Delivery of Self-Assembling Photosensitizer–Nitazoxanide Nanocomplexes with<br>Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors.<br>ACS Biomaterials Science and Engineering, 2021, 7, 1485-1495.                      | 2.6 | 12        |
| 450 | Percutaneous implantation of ethanol fueled catalytic hydrogel suppresses tumor growth by triggering ferroptosis. Materials Today, 2022, 55, 7-20.                                                                                                                               | 8.3 | 12        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | Albumin-binding lipid-aptamer conjugates for cancer immunoimaging and immunotherapy. Science<br>China Chemistry, 2022, 65, 574-583.                                                                                                   | 4.2  | 12        |
| 452 | Two-phase releasing immune-stimulating composite orchestrates protection against microbial infections. Biomaterials, 2021, 277, 121106.                                                                                               | 5.7  | 11        |
| 453 | Collagen-targeted tumor-specific transepithelial penetration enhancer mediated intravesical chemoimmunotherapy for non-muscle-invasive bladder cancer. Biomaterials, 2022, 283, 121422.                                               | 5.7  | 11        |
| 454 | Cancer Therapy: Perfluorocarbon-Loaded Hollow Bi2 Se3 Nanoparticles for Timely Supply of Oxygen<br>under Near-Infrared Light to Enhance the Radiotherapy of Cancer (Adv. Mater. 14/2016). Advanced<br>Materials, 2016, 28, 2654-2654. | 11.1 | 10        |
| 455 | Effect of the Temperature on NO Release Characteristics in an O <sub>2</sub> /CO <sub>2</sub><br>Atmosphere during Coal Combustion. Energy & Fuels, 2020, 34, 842-852.                                                                | 2.5  | 10        |
| 456 | Two Dimensional Transitional Metal Dichalcogenides for Biomedical Applications. Acta Chimica Sinica, 2015, 73, 902.                                                                                                                   | 0.5  | 10        |
| 457 | Epigenetic Platinum Complexes Breaking the "Eat Me/Don't Eat Me―Balance for Enhanced Cancer<br>Chemoimmunotherapy. Bioconjugate Chemistry, 2022, 33, 343-352.                                                                         | 1.8  | 10        |
| 458 | Phthalocyanine iron nanodots for combined chemodynamic-sonodynamic cancer therapy. Science China Materials, 2022, 65, 2600-2608.                                                                                                      | 3.5  | 10        |
| 459 | Fast Fourier Transform-weighted Photoacoustic Imaging by In Vivo Magnetic Alignment of Hybrid<br>Nanorods. Nano Letters, 2022, 22, 5158-5166.                                                                                         | 4.5  | 10        |
| 460 | Recent advances in the development of nanomaterials for DC-based immunotherapy. Science Bulletin, 2016, 61, 514-523.                                                                                                                  | 4.3  | 9         |
| 461 | Chelatorâ€Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation. Angewandte<br>Chemie, 2017, 129, 2935-2938.                                                                                                       | 1.6  | 9         |
| 462 | Near-infrared dye bound human serum albumin with separated imaging and therapy wavelength<br>channels for imaging-guided photothermal therapy preventing tumor metastasis. Journal of<br>Controlled Release, 2015, 213, e89.          | 4.8  | 7         |
| 463 | Eddy current thermal effect based on magnesium microrods for combined tumor therapy. Chemical Engineering Journal, 2022, 446, 137038.                                                                                                 | 6.6  | 7         |
| 464 | Photothermal Therapy: 1D Coordination Polymer Nanofibers for Lowâ€Temperature Photothermal<br>Therapy (Adv. Mater. 40/2017). Advanced Materials, 2017, 29, .                                                                          | 11.1 | 5         |
| 465 | Glycopolymer Engineering of the Cell Surface Changes the Single Cell Migratory Direction and<br>Inhibits the Collective Migration of Cancer Cells. ACS Applied Materials & Interfaces, 2022, 14,<br>4921-4930.                        | 4.0  | 5         |
| 466 | High relaxivity Gd3+-based organic nanoparticles for efficient magnetic resonance angiography.<br>Journal of Nanobiotechnology, 2022, 20, 170.                                                                                        | 4.2  | 5         |
| 467 | Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal—organic nanosonosensitizer. Nano Research, 2022, 15, 6340-6347.                                                           | 5.8  | 5         |
| 468 | Photoacoustic molecular imaging using single walled carbon nanotubes in living mice. , 2009, , .                                                                                                                                      |      | 4         |

| #   | ARTICLE                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | cRGD-Functionalized AuNR-cored PEG-PCL nanoparticles for efficacious glioma chemotherapy. Journal of Controlled Release, 2015, 213, e135.                                                                                                         | 4.8 | 4         |
| 470 | Biomedical Applications: Imagingâ€Guided pHâ€Sensitive Photodynamic Therapy Using Charge Reversible<br>Upconversion Nanoparticles under Nearâ€Infrared Light (Adv. Funct. Mater. 24/2013). Advanced<br>Functional Materials, 2013, 23, 3018-3018. | 7.8 | 3         |
| 471 | Effect of CO <sub>2</sub> on N Distribution in Pyrolysis and Oxidation of Volatile N and Char N in Oxy-Fuel Combustion at High Temperatures. Energy & Fuels, 2020, 34, 9852-9861.                                                                 | 2.5 | 3         |
| 472 | Enhanced sensitivity carbon nanotubes as targeted photoacoustic molecular imaging agents.<br>Proceedings of SPIE, 2009, , .                                                                                                                       | 0.8 | 1         |
| 473 | DNAâ€Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive<br>Immunotherapy. Angewandte Chemie, 2020, 132, 14952-14963.                                                                                 | 1.6 | 1         |
| 474 | Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chemical Research in Chinese<br>Universities, 0, , 1.                                                                                                                               | 1.3 | 1         |
| 475 | Biomedical application of sp <sup>2</sup> carbon nanomaterials for cancer therapy and molecular imaging. , 2010, , .                                                                                                                              |     | 0         |
| 476 | Up-Conversion Nanoparticles for Early Cancer Diagnosis. Frontiers in Nanobiomedical Research, 2015,<br>, 1-19.                                                                                                                                    | 0.1 | 0         |
| 477 | Intelligent Protein-Coated Bismuth Sulfide and Manganese Oxide Nanocomposites by Biomineralization for Multimodal Imaging-Guided Enhanced Tumor Therapy. SSRN Electronic Journal, 0, , .                                                          | 0.4 | Ο         |