Xiao-Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3175155/publications.pdf Version: 2024-02-01

XIAO-FENIC WANC

#	Article	IF	CITATIONS
1	Phenanthrene[2]arene: synthesis and application as nonporous adaptive crystals in the separation of benzene from cyclohexane. Organic Chemistry Frontiers, 2022, 9, 3307-3311.	4.5	18
2	Phenol Derivatives as Co-Crystallized Templates to Modulate Trimesic-Acid-Based Hydrogen-Bonded Organic Molecular Frameworks. Crystals, 2021, 11, 409.	2.2	3
3	Synthesis, Structures, and Fluorescence Properties of Dimeric Aluminum Oxo Clusters. Inorganic Chemistry, 2021, 60, 7089-7093.	4.0	6
4	An in-situ esterification reaction in amino-alcohols coordinated aluminum oxo clusters. Inorganic Chemistry Communication, 2021, 128, 108608.	3.9	1
5	Synthesis and Selective Au(III) Adsorption of Ureido Polymers Containing Large Repeating Rings. ACS Omega, 2021, 6, 28004-28011.	3.5	5
6	Two Unexpected Temperature-Induced Supermolecular Isomers from Multi-Topic Carboxylic Acid: Hydrogen Bonding Layer or Helix Tube. Molecules, 2021, 26, 6938.	3.8	1
7	Hydrogen bonding-tuned hydroxo-bridged tetra-copper Cu4(bipy)4-cluster supramolecular network to layered coordination polymer. CrystEngComm, 2020, 22, 5255-5262.	2.6	7
8	Amidoxime-Functionalized Covalent Organic Nanosheets for Sequestration of Uranium In Vivo. ACS Applied Bio Materials, 2020, 3, 8731-8738.	4.6	17
9	Microfabrication of High-Aspect Ratio KNN Lead-Free Piezoceramic Pillar Arrays by Aqueous Gelcasting. Ceramics, 2020, 3, 287-296.	2.6	0
10	Ligands modulated the variable binuclear Cd ₂ -SBUs and structures of four layered coordination frameworks. CrystEngComm, 2020, 22, 3965-3974.	2.6	6
11	The presence of mixed-valent silver in the uranyl phenylenediphosphonate framework. New Journal of Chemistry, 2020, 44, 6037-6041.	2.8	3
12	Cooperative Capture of Uranyl Ions by a Carbonylâ€Bearing Hierarchicalâ€Porous Cu–Organic Framework. Angewandte Chemie, 2019, 131, 18984-18988.	2.0	6
13	Cooperative Capture of Uranyl Ions by a Carbonylâ€Bearing Hierarchicalâ€Porous Cu–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 18808-18812.	13.8	42
14	A hydrolytically stable europium–organic framework for the selective detection of radioactive Th ⁴⁺ in aqueous solution. CrystEngComm, 2019, 21, 3471-3477.	2.6	13
15	Two chiral cadmium carboxylate framework isomers generated by spontaneous resolution: synthesis, structures and properties. Journal of Coordination Chemistry, 2019, 72, 251-261.	2.2	3
16	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
17	Computational insight into asymmetric uranylâ€salophen coordinated with α, βâ€unsaturated aldehydes and ketones. Applied Organometallic Chemistry, 2018, 32, e4137.	3.5	11
18	A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property. Journal of Molecular Structure, 2017, 1138, 155-160.	3.6	11

#	Article	IF	CITATIONS
19	Computational insight into complex structures of thorium coordination with N, N'- bis(3-allyl) Tj ETQq1 1 0.7	84314 rgE 1.8	BT JOverlock
20	Metallic coordination selectivity effect in the trinuclear M ₃ (RCOO) ₆ secondary building units of three layer metal–carboxylate frameworks. RSC Advances, 2016, 6, 14522-14530.	3.6	5
21	Achiral diamondoid or chiral quartz net: the effect of substituents in the topology and catenation of coordination polymers based on tetrahedral Cd(COO)4 building units. CrystEngComm, 2013, 15, 3470.	2.6	12
22	Crystal structure of bis-[N,N´-bis-(3-allyl salicylidene)-o-phenylene diamine]tho rium (IV), C52H44N4O4Th. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 521-524.	0.3	2
23	Layer-by-layer evolution and a hysteretic single-crystal to single-crystal transformation cycle of a flexible pillared-layer open framework. Chemical Communications, 2012, 48, 133-135.	4.1	49
24	A Copperâ€Carboxylate Layerâ€Framework with Pseudoâ€ÂKagomé Net. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1365-1369.	1.2	3
25	Buffering additive effect in the formation of metal–carboxylate frameworks with slightly different linear M3(RCOO)6 clusters. CrystEngComm, 2011, 13, 4196.	2.6	26
26	Two temperature-induced isomers of metal-carboxylate frameworks based on different linear trinuclear Co3(RCOO)8 clusters exhibiting different magnetic behaviours. CrystEngComm, 2010, 12, 3834.	2.6	53
27	Two microporous metal–organic frameworks with different topologies constructed from linear trinuclear M3(COO)n secondary building units. CrystEngComm, 2008, 10, 753.	2.6	55
28	Microwave-Assisted Solvothermal Synthesis of a Dynamic Porous Metal-Carboxylate Framework. Crystal Growth and Design, 2008, 8, 4559-4563.	3.0	76