Marina Monti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3174511/publications.pdf

Version: 2024-02-01

686830 794141 52 495 13 19 citations h-index g-index papers 54 54 54 348 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Web-Based Solution Supporting CAD Assembly Model Exploration and Analysis. SN Computer Science, 2022, 3, 1.	2.3	O
2	Enhancing Product Semantics Understanding Through Automatic Part Type Recognition in CAD Assembly Models. Computer-Aided Design and Applications, 2022, 19, 896-912.	0.4	2
3	Simulated annealing-based fitting of CAD models to point clouds of mechanical parts' assemblies. Engineering With Computers, 2021, 37, 2891-2909.	3 . 5	9
4	A heuristic approach to detect CAD assembly clusters. Procedia CIRP, 2021, 100, 463-468.	1.0	3
5	Review on the Leveraging of Design Information in 3D CAD Models for Subassemblies Identification. Computer-Aided Design and Applications, 2021, 18, 1247-1264.	0.4	3
6	SHREC 2021: Skeleton-based hand gesture recognition in the wild. Computers and Graphics, 2021, 99, 201-211.	1.4	19
7	SFINGE 3D: A novel benchmark for online detection and recognition of heterogeneous hand gestures from 3D fingers' trajectories. Computers and Graphics, 2020, 91, 232-242.	1.4	9
8	3D Dynamic Hand Gestures Recognition Using the Leap Motion Sensor and Convolutional Neural Networks. Lecture Notes in Computer Science, 2020, , 420-439.	1.0	18
9	Content-based multi-criteria similarity assessment of CAD assembly models. Computers in Industry, 2019, 112, 103111.	5.7	12
10	Content-based CAD assembly model retrieval: Survey and future challenges. CAD Computer Aided Design, 2019, 113, 62-81.	1.4	34
11	CAD3A: A Web-Based Application to Visualize and Semantically Enhance CAD Assembly Models. , 2019, , .		4
12	A methodology for part classification with supervised machine learning. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2019, 33, 100-113.	0.7	16
13	A Survey of Immersive Systems for Shape Manipulation. Computer-Aided Design and Applications, 2019, 16, 1146-1157.	0.4	5
14	Exploring the Benefits of the Virtual Reality Technologies for Assembly Retrieval Applications. Lecture Notes in Computer Science, 2019, , 43-59.	1.0	2
15	Configuration and inspection of multi-fixturing pallets in flexible manufacturing systems. Robotics and Computer-Integrated Manufacturing, 2018, 52, 65-75.	6.1	5
16	Curve-based image editing for product styling. Computer-Aided Design and Applications, 2018, 15, 367-377.	0.4	2
17	Multi-criteria retrieval of CAD assembly models. Journal of Computational Design and Engineering, 2018, 5, 41-53.	1.5	16
18	Car model reconstruction from images through character line recognition. Engineering Computations, 2018, 35, 1873-1906.	0.7	2

#	Article	IF	Citations
19	Regular patterns of repeated elements in CAD assembly model retrieval. Computer-Aided Design and Applications, 2017, 14, 516-525.	0.4	12
20	Identification of Similar and Complementary Subparts in B-Rep Mechanical Models. Journal of Computing and Information Science in Engineering, 2017, 17, .	1.7	9
21	Identification of Functional Components in Mechanical Assemblies. Procedia CIRP, 2017, 60, 542-547.	1.0	1
22	CAD Assembly Retrieval and Browsing. IFIP Advances in Information and Communication Technology, 2017, , 499-508.	0.5	2
23	Zero-point fixture systems as a reconfiguration enabler in flexible manufacturing systems. Computer-Aided Design and Applications, 2016, 13, 684-692.	0.4	10
24	Automatic Extraction of Assembly Component Relationships for Assembly Model Retrieval. Procedia CIRP, 2016, 50, 472-477.	1.0	19
25	A web repository to describe and execute shape oriented workflows. Computer-Aided Design and Applications, 2016, 13, 637-646.	0.4	1
26	An Ontology-based Framework for Sustainable Factories. Computer-Aided Design and Applications, 2015, 12, 198-207.	0.4	12
27	Design and Inspection of Multi-fixturing Pallets for Mixed Part Types. Procedia CIRP, 2015, 36, 159-164.	1.0	5
28	A Semantic Framework for Sustainable Factories. Procedia CIRP, 2014, 17, 547-552.	1.0	15
29	Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. Lecture Notes in Computer Science, 2014, , .	1.0	27
30	Ontology-Driven Visual Browsing of Historical Industrial Archives. Lecture Notes in Computer Science, 2014, , 716-723.	1.0	0
31	Semantics for the exploration of historical Business archives: Challenges and perspectives in the R.I.C.E.R.C.A. project. , 2013, , .		0
32	A Survey to Evaluate how non Designers Perceive Aesthetic Properties of Styling Features. Computer-Aided Design and Applications, 2013, 10, 129-138.	0.4	2
33	An Ontology for the Identification of the most Appropriate Risk Management Methodology. Lecture Notes in Computer Science, 2012, , 444-453.	1.0	2
34	Context dependent semantic granularity. International Journal of Data Mining, Modelling and Management, 2011, 3, 189.	0.1	4
35	Semantic Evaluation and Deformation of Curves Based on Aesthetic Criteria. Computer-Aided Design and Applications, 2011, 8, 449-464.	0.4	5
36	Styling Features for Industrial Design. , 2011, , 79-95.		2

#	Article	IF	Citations
37	Preserving car stylists' design intent through an ontology. International Journal on Interactive Design and Manufacturing, 2008, 2, 9-16.	1.3	15
38	Ontology driven certification of pressure equipments. Process Safety Progress, 2008, 27, 313-322.	0.4	6
39	A framework for the automatic annotation of car aesthetics. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2007, 21, 73-90.	0.7	22
40	Deriving Functionality from 3D Shapes: Ontology Driven Annotation and Retrieval. Computer-Aided Design and Applications, 2007, 4, 773-782.	0.4	9
41	Semantic-based operators to support car sketching. Journal of Engineering Design, 2007, 18, 395-411.	1.1	12
42	Exploiting process plant digital representation for risk analysis. Journal of Loss Prevention in the Process Industries, 2007, 20, 69-78.	1.7	20
43	Aesthetic-driven tools for industrial design. Journal of Engineering Design, 2006, 17, 193-215.	1.1	28
44	A Knowledge-based Tool for Risk Prevention on Pressure Equipments. Computer-Aided Design and Applications, 2006, 3, 99-108.	0.4	6
45	Semantic Granularity for the Semantic Web. Lecture Notes in Computer Science, 2006, , 1863-1872.	1.0	4
46	Styling Properties and Features in Computer Aided Industrial Design. Computer-Aided Design and Applications, 2004, 1, 321-330.	0.4	8
47	A product data manager supporting a new co-design methodology for SMEs. International Journal of Computer Applications in Technology, 2003, 18, 174.	0.3	3
48	A Survey of Computer-Aided Modeling Tools for Aesthetic Design. Journal of Computing and Information Science in Engineering, 2002, 2, 11-20.	1.7	26
49	A modelling tool for the management of product data in a co-design environment. CAD Computer Aided Design, 2002, 34, 1063-1073.	1.4	42
50	Regular Patterns of Repeated Elements in CAD Assembly Model Retrieval., 0, , .		2
51	Identification of Subassemblies by Leveraging Design Information in 3D Models. , 0, , .		0
52	Case-based tuning of a metaheuristic algorithm exploiting sensitivity analysis and design of experiments for reverse engineering applications. Engineering With Computers, $0, 1$.	3.5	0