
Weili Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3174485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiation Induced Lymphopenia Is Associated With the Effective Dose to the Circulating Immune Cells in Breast Cancer. Frontiers in Oncology, 2022, 12, .	1.3	10
2	Risk factors for symptomatic radiation pneumonitis after stereotactic body radiation therapy (SBRT) in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2021, 156, 231-238.	0.3	26
3	MA13.01 A Validation Study on DNA Repair Gene Variant for Lung Cancer Survival Prediction after Chemoradiation: A Secondary Analysis for RTOG-0617 Study. Journal of Thoracic Oncology, 2021, 16, S181.	0.5	Ο
4	Significance of radiation esophagitis: Conditional survival assessment in patients with non-small cell lung cancer. Journal of the National Cancer Center, 2021, 1, 31-38.	3.0	1
5	Genetic Variations in the Transforming Growth Factor-β1 Pathway May Improve Predictive Power for Overall Survival in Non-small Cell Lung Cancer. Frontiers in Oncology, 2021, 11, 599719.	1.3	4
6	Impact of effective dose to immune cells (EDIC) on lymphocyte nadir and survival in limited-stage SCLC. Radiotherapy and Oncology, 2021, 162, 26-33.	0.3	10
7	A Validation Study on IDO Immune Biomarkers for Survival Prediction in Non–Small Cell Lung Cancer: Radiation Dose Fractionation Effect in Early-Stage Disease. Clinical Cancer Research, 2020, 26, 282-289.	3.2	19
8	A framework for modeling radiation induced lymphopenia in radiotherapy. Radiotherapy and Oncology, 2020, 144, 105-113.	0.3	26
9	FLASH Dose Rate Effect on Circulating Immune Cells: A Potential Mechanism for FLASH-RT?. International Journal of Radiation Oncology Biology Physics, 2020, 108, S7.	0.4	4
10	Genetic Variant in DNA Repair Genes May Be Associated with IDO Immune Status in Lung Cancer Patients Treated with Chemoradiation. International Journal of Radiation Oncology Biology Physics, 2020, 108, S172.	0.4	0
11	RTOG0617 to Externally Validate Blood Cell ERCC1/2 Genotypic Signature as a Radiosensitivity Biomarker for Both Tumor and Normal Tissue for Individualized Dose Prescription. International Journal of Radiation Oncology Biology Physics, 2020, 108, S2.	0.4	3
12	Radiation Induced Lymphopenia is Associated with the Effective Dose to the Circulating Immune Cells (EDIC) for Breast Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, e57-e58.	0.4	1
13	Central Airway Toxicity After High Dose Radiation: A Combined Analysis of Prospective Clinical Trials for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 587-596.	0.4	8
14	Weighted-Support Vector Machine Learning Classifier of Circulating Cytokine Biomarkers to Predict Radiation-Induced Lung Fibrosis in Non-Small-Cell Lung Cancer Patients. Frontiers in Oncology, 2020, 10, 601979.	1.3	7
15	Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect?. Radiotherapy and Oncology, 2020, 149, 55-62.	0.3	84
16	Pre-radiotherapy lymphocyte count and platelet-to-lymphocyte ratio may improve survival prediction beyond clinical factors in limited stage small cell lung cancer: model development and validation. Translational Lung Cancer Research, 2020, 9, 2315-2327.	1.3	8
17	Changes of plasma GARP-LTGFβ1 complex during chemoradiotherapy may predict survival in non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2020, 38, e21042-e21042.	0.8	0
18	The Effect of Thoracic Radiation Therapy on Overall Survival in SCLC: Findings from the National Cancer Database. International Journal of Radiation Oncology Biology Physics, 2019, 105, E549-E550.	0.4	0

WEILI WANG

#	Article	IF	CITATIONS
19	Machine Learning to Build and Validate a Model for Radiation Pneumonitis Prediction in Patients with Non–Small Cell Lung Cancer. Clinical Cancer Research, 2019, 25, 4343-4350.	3.2	16
20	P2.12-03 Building and Validating a Lymphocyte Nadir Based Model to Predict Survival in Patients with Limited Stage-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S813.	0.5	1
21	Doses of radiation to the pericardium, instead of heart, are significant for survival in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2019, 133, 213-219.	0.3	29
22	Greater reduction in mid-treatment FDG-PET volume may be associated with worse survival in non-small cell lung cancer. Radiotherapy and Oncology, 2019, 132, 241-249.	0.3	20
23	Coexpression patterns of IDO-1, PD-L1 and EGFR in non-small cell lung cancer Journal of Clinical Oncology, 2019, 37, e14279-e14279.	0.8	2
24	IDO Immune Status after Chemoradiation May Predict Survival in Lung Cancer Patients. Cancer Research, 2018, 78, 809-816.	0.4	57
25	Radiation to the Immune System May be an Important Risk Factor for Long-term Survival after SBRT in Early Stage Non-small Cell Lung Cancer: A Role of RT Plan Optimization. International Journal of Radiation Oncology Biology Physics, 2018, 102, e689-e690.	0.4	2
26	Immune-related Cytokine Expression Predicts Survival in Early Stage Non-small Cell Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2018, 102, e712.	0.4	0
27	Effect of Radiation Therapy Dose Fractionation on IDO Immune Status in Early Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, e711-e712.	0.4	0
28	The effect of thoracic radiation on overall survival and their association with systemic immune therapy in stage IV NSCLC: Findings from the National Cancer Database Journal of Clinical Oncology, 2018, 36, 9103-9103.	0.8	1
29	Racial disparities in non-small cell lung cancer, analysis of the Indiana University Cancer Center registry database 2000-2015 Journal of Clinical Oncology, 2018, 36, e18622-e18622.	0.8	1
30	Effect of Midtreatment PET/CT-Adapted Radiation Therapy With Concurrent Chemotherapy in Patients With Locally Advanced Non–Small-Cell Lung Cancer. JAMA Oncology, 2017, 3, 1358.	3.4	177
31	Radiation to the Normal Lung May be an Important Risk Factor for Survival after Stereotactic Body Radiation Therapy in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E470-E471.	0.4	0
32	Risk Factors for Radiation-Induced Lung Toxicity after Stereotactic Body Radiation Therapy in Patients with Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E475-E476.	0.4	0
33	Factors Associated With Overall Survival After Radiation Therapy in Patients With Hepatocellular Carcinoma. International Journal of Radiation Oncology Biology Physics, 2017, 99, E179.	0.4	0
34	Clinical Dose-Volume Histogram Analysis for Radiation-Induced Proximal Bronchial Tree Toxicity in Patients With Non–small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E501.	0.4	0
35	Factors Associated With Survival in Patients With Non–small Cell Lung Cancer from a Single Institution Study of 3569 Patients. International Journal of Radiation Oncology Biology Physics, 2017, 99, E508-E509.	0.4	0
36	Effects of Fractionation Schedule on Expression Patterns of Clinically Significant Circulating Cytokines During Radiation Therapy for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, E587-E588.	0.4	0

WEILI WANG

#	Article	IF	CITATIONS
37	Effect of PTV and Collimator Margins on Tumor Control for Patients with Stage III Non-small Cell Lung Cancer in NRG Oncology RTOG-0617. International Journal of Radiation Oncology Biology Physics, 2017, 99, S181-S182.	0.4	1
38	MA 13.06 New Risk Factors for Overall Survival After SBRT in Early Stage NSCLC: A Role of RT Plan Optimization. Journal of Thoracic Oncology, 2017, 12, S1853.	0.5	1
39	Principal component analysis identifies patterns of cytokine expression in non-small cell lung cancer patients undergoing definitive radiation therapy. PLoS ONE, 2017, 12, e0183239.	1.1	11
40	Circulating Antibodies to Linear Peptide Antigens Derived from ANXA1 and FOXP3 in Lung Cancer. Anticancer Research, 2017, 37, 3151-3155.	0.5	8
41	Postoperative radiation for tumor control and overall survival in thymic epithelial tumors (TET): A matched-pair analysis Journal of Clinical Oncology, 2017, 35, 8572-8572.	0.8	0
42	Paraneoplastic syndrome and survival in thymic epithelial tumors (TET): The Indiana University experience Journal of Clinical Oncology, 2017, 35, 8574-8574.	0.8	0
43	A Phase II Trial of Midtreatment PET-CT Adapted Radiation Therapy With Concurrent Chemotherapy in Patients With Inoperable/Unresectable Non-Small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2016, 96, E440.	0.4	1
44	Radiosensitive Patients Have Worse Survival After Stereotactic Body Radiation Therapy (SBRT)—ls Dose De-Escalation in SBRT Needed for These Patients?. International Journal of Radiation Oncology Biology Physics, 2016, 96, E452-E453.	0.4	0
45	Radiation-Induced Proximal Bronchial Tree and Heart Toxicity After Stereotactic Body Radiation Therapy of the Thorax: Differences Between Central and Peripheral Diseases. International Journal of Radiation Oncology Biology Physics, 2016, 96, E475-E476.	0.4	0
46	Cytokine Signature During Early Treatment May Predict Midtreatment Positron Emission Tomography/Computed Tomography and Survival in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 96, E477.	0.4	0
47	Risk Factors for Noncancer Progression–Associated Death in Patients With Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 96, E487-E488.	0.4	0
48	A Prognostic Model Combining Genetic Variations in the Transforming Growth Factor-Beta1 Pathway and Clinical Factors for Non-Small Cell Lung Cancer After Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, E667.	0.4	0
49	Further study of circulating IgG antibodies to <scp>CD</scp> 25â€derived peptide antigens in nonsmall cell lung cancer. FEBS Open Bio, 2016, 6, 211-215.	1.0	3
50	Baseline Plasma Proteomic Analysis to Identify Glycoproteins for Prediction of Radiation Induced Lung Toxicity in Patients With Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2015, 93, S151-S152.	0.4	0
51	Study of circulating IgG antibodies to BIRC5 and MYC in nonâ€small cell lung cancer. FEBS Open Bio, 2015, 5, 809-812.	1.0	6
52	Use a survival model to correlate single-nucleotide polymorphisms of DNA repair genes with radiation dose–response in patients with non-small cell lung cancer. Radiotherapy and Oncology, 2015, 117, 77-82.	0.3	15
53	A Blood Biomarker Dependent Survival Model for NSCLC Patients Treated With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 90, S18.	0.4	1
54	A Blood Biomarker Dependent Survival Model for NSCLC Patients Treated With Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 90, S77.	0.4	0

WEILI WANG

#	Article	IF	CITATIONS
55	Autoantibodies against p16 protein-derived peptides may be a potential biomarker for non-small cell lung cancer. Tumor Biology, 2014, 35, 2047-2051.	0.8	19
56	Detection of circulating antibodies to linear peptide antigens derived from ANXA1 and DDX53 in lung cancer. Tumor Biology, 2014, 35, 4901-4905.	0.8	15
57	Autoantibodies Against p16 Protein-Derived Peptides Predict Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 90, S665.	0.4	0
58	Pulmonary Artery Invasion, High-Dose Radiation, and Overall Survival in Patients With Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2014, 89, 313-321.	0.4	22
59	Assessing the Predictive Value of Cytokine Levels for Radiation-Induced Esophagitis in Combination With Clinical and Dosimetric Parameters in Patients Treated for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, S535.	0.4	0
60	Effect of Normal Lung Definition on Lung Dosimetry and Lung Toxicity Prediction in Radiation Therapy Treatment Planning. International Journal of Radiation Oncology Biology Physics, 2013, 86, 956-963.	0.4	42
61	Serum MicroRNA Signature Predicts Survival in Patients With Unresectable/Inoperable Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 87, S167.	0.4	0
62	FDG Pulmonary Uptake Changes During and Post-Radiation Therapy Compared to Pretreatment in Predicting Radiation-Induced Lung Toxicity in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, S77.	0.4	1
63	Serum MicroRNA as a Predictive Marker for Radiation Pneumonitis in Patients With Inoperable/Unresectable Non-Small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2013, 87, S93.	0.4	3
64	FDG Pulmonary Uptake Changes During and Postradiotherapy Compared to Pretreatment in Predicting Radiation-induced Lung Toxicity in Non-Small Cell Lung Cancer. Practical Radiation Oncology, 2013, 3, S22.	1.1	0
65	Serum miRNA signature to identify a patient's resistance to high-dose radiation therapy for unresectable non-small cell lung cancer Journal of Clinical Oncology, 2013, 31, 7580-7580.	0.8	5
66	Circulating IgG antibody against FOXP3 may be a potential biomarker for lung cancer. Advances in Lung Cancer (Irvine), 2013, 02, 79-83.	0.2	2
67	Comparison of the Effectiveness of Radiofrequency Ablation With Stereotactic Body Radiation Therapy in Inoperable Stage I Non-small Cell Lung Cancer: A Systemic Review and Meta-analysis. International Journal of Radiation Oncology Biology Physics, 2012, 84, S611-S612.	0.4	1
68	Single Nucleotide Polymorphisms in DNA Repair Genes May Be Associated With Survival in Patients With Non-small Cell Lung Cancer Treated With Definitive Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2012, 84, S69.	0.4	2
69	Relationship Between Pulmonary Artery Invasion and High-dose Radiation and Overall Survival in Patients With Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, S612.	0.4	1
70	AB022. PS01.04. Myasthenia gravis in thymic epithelial tumors incidence and prognosis. Mediastinum, 0, 1, AB022-AB022.	0.6	0
71	AB006. OS01.06. Factors associated with survival in patients with thymoma: study of 523 cases from one institution. Mediastinum, 0, 1, AB006-AB006.	0.6	0
72	AB012. OS03.02. Paraneoplastic syndrome and survival in thymic epithelial tumors the IU experience. Mediastinum, 0, 1, AB012-AB012.	0.6	0

#	Article	IF	CITATIONS
73	AB001. OS01.01. Post op radiation may be detrimental in thymoma but not in thymic carcinoma tumors. Mediastinum, 0, 1, AB001-AB001.	0.6	о