Yiting Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3174190/publications.pdf

Version: 2024-02-01

163	33,632	73	155
papers	citations	h-index	g-index
167	167 docs citations	167	41644
all docs		times ranked	citing authors

#	Article	IF	Citations
1	Cellular plasticity in bone metastasis. Bone, 2022, 158, 115693.	2.9	5
2	Bone niche and bone metastases. , 2022, , 107-119.		0
3	Pharmacological disruption of the MTDH–SND1 complex enhances tumor antigen presentation and synergizes with anti-PD-1 therapy in metastatic breast cancer. Nature Cancer, 2022, 3, 60-74.	13.2	28
4	Small-molecule inhibitors that disrupt the MTDH–SND1 complex suppress breast cancer progression and metastasis. Nature Cancer, 2022, 3, 43-59.	13.2	22
5	Tumor-derived Jagged 1 promotes cancer progression through immune evasion. Cell Reports, 2022, 38, 110492.	6.4	18
6	LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer. Nature Cancer, 2022, 3, 355-370.	13.2	21
7	Microbial metabolite as icebreaker for immunotherapy. Cell Metabolism, 2022, 34, 506-507.	16.2	2
8	Handshaking towards zero-concept analysis and technical measures of LEED zero-energy building in connection with technical standard of nearly zero-energy building in China. Energy Exploration and Exploitation, 2021, 39, 669-689.	2.3	7
9	Trefoil factor-1 upregulation in estrogen-receptor positive breast cancer correlates with an increased risk of bone metastasis. Bone, 2021, 144, 115775.	2.9	7
10	Therapeutic Targeting of Metadherin Suppresses Colorectal and Lung Cancer Progression and Metastasis. Cancer Research, 2021, 81, 1014-1025.	0.9	33
11	Epsins 1 and 2 promote NEMO linear ubiquitination via LUBAC to drive breast cancer development. Journal of Clinical Investigation, 2021, 131, .	8.2	18
12	TGF- \hat{l}^2 -induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, 23, 257-267.	10.3	71
13	Bone marrow niches in the regulation of bone metastasis. British Journal of Cancer, 2021, 124, 1912-1920.	6.4	35
14	Emerging strategies for treating metastasis. Nature Cancer, 2021, 2, 258-270.	13.2	71
15	Evolving barcodes shed light into evolving metastases. Developmental Cell, 2021, 56, 1077-1079.	7.0	1
16	Lineage tracing reveals metastatic dynamics. Cancer Cell, 2021, 39, 1050-1052.	16.8	0
17	Dll1+ quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nature Communications, 2021, 12, 432.	12.8	38
18	Changing trends and disparities in 5-year overall survival of women with invasive breast cancer in the United States, 1975-2015. American Journal of Cancer Research, 2021, 11, 3201-3211.	1.4	2

#	Article	IF	CITATIONS
19	E-Cadherin: Context-Dependent Functions of a Quintessential Epithelial Marker in Metastasis. Cancer Research, 2021, 81, 5800-5802.	0.9	21
20	E-cigarette promotes breast carcinoma progression and lung metastasis: Macrophage-tumor cells crosstalk and the role of CCL5 and VCAM-1. Cancer Letters, 2020, 491, 132-145.	7.2	23
21	Glucose-6-Phosphate Dehydrogenase Is Not Essential for K-Ras–Driven Tumor Growth or Metastasis. Cancer Research, 2020, 80, 3820-3829.	0.9	33
22	Stresses in the metastatic cascade: molecular mechanisms and therapeutic opportunities. Genes and Development, 2020, 34, 1577-1598.	5.9	19
23	A bridge between melanoma cell states. Nature Cell Biology, 2020, 22, 913-914.	10.3	2
24	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	28.9	691
25	Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. PLoS Pathogens, 2020, 16, e1008867.	4.7	12
26	ASB13 inhibits breast cancer metastasis through promoting SNAI2 degradation and relieving its transcriptional repression of YAP. Genes and Development, 2020, 34, 1359-1372.	5.9	32
27	Deubiquitinase USP20 promotes breast cancer metastasis by stabilizing SNAI2. Genes and Development, 2020, 34, 1310-1315.	5.9	47
28	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
29	Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. , 2020, 16, e1008867.		0
30	Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. , 2020, 16, e1008867.		0
31	Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. , 2020, 16, e1008867.		0
32	Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. , 2020, 16, e1008867.		0
33	Cytotoxic alkyl-quinolones mediate surface-induced virulence in Pseudomonas aeruginosa. , 2020, 16, e1008867.		0
34	A biomimetic 3D model of hypoxia-driven cancer progression. Scientific Reports, 2019, 9, 12263.	3.3	56
35	CD44 splice isoform switching determines breast cancer stem cell state. Genes and Development, 2019, 33, 166-179.	5.9	146
36	Activin-like kinase 5 (ALK5) inactivation in the mouse uterus results in metastatic endometrial carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3883-3892.	7.1	36

3

#	Article	IF	Citations
37	The importance of developing therapies targeting the biological spectrum of metastatic disease. Clinical and Experimental Metastasis, 2019, 36, 305-309.	3.3	9
38	Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Developmental Cell, 2019, 49, 361-374.	7.0	629
39	Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nature Cell Biology, 2019, 21, 627-639.	10.3	160
40	Context-dependent EMT programs in cancer metastasis. Journal of Experimental Medicine, 2019, 216, 1016-1026.	8.5	388
41	Role Reversal: A Pro-metastatic Function of E-Cadherin. Developmental Cell, 2019, 51, 417-419.	7.0	9
42	Tinagl1 Suppresses Triple-Negative Breast Cancer Progression and Metastasis by Simultaneously Inhibiting Integrin/FAK and EGFR Signaling. Cancer Cell, 2019, 35, 64-80.e7.	16.8	124
43	Long Noncoding RNA GMAN, Up-regulated in Gastric Cancer Tissues, Is Associated With Metastasis in Patients and Promotes Translation of Ephrin A1 by Competitively Binding GMAN-AS. Gastroenterology, 2019, 156, 676-691.e11.	1.3	225
44	The PLAG1-GDH1 Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer. Molecular Cell, 2018, 69, 87-99.e7.	9.7	217
45	The Biology of Bone Metastasis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031252.	6.2	123
46	Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nature Communications, 2018, 9, 5005.	12.8	144
47	Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science, 2018, 360, .	12.6	144
48	Metastatic niche functions and therapeutic opportunities. Nature Cell Biology, 2018, 20, 868-877.	10.3	129
49	pSTAT3+ Reactive Astrocytes Promote Brain Metastasis. Trends in Molecular Medicine, 2018, 24, 733-735.	6.7	5
50	Complex interplay between tumor microenvironment and cancer therapy. Frontiers of Medicine, 2018, 12, 426-439.	3.4	37
51	Lnc-ing ROR1–HER3 and Hippo signalling in metastasis. Nature Cell Biology, 2017, 19, 81-83.	10.3	45
52	Mouse genomic screen reveals novel host regulator of metastasis. Genome Biology, 2017, 18, 31.	8.8	3
53	Lipid Metabolism Fuels Cancer's Spread. Cell Metabolism, 2017, 25, 228-230.	16.2	58
54	Selection of the highly replicative and partially multidrug resistant rtS78T HBV polymerase mutation during TDF-ETV combination therapy. Journal of Hepatology, 2017, 67, 246-254.	3.7	52

#	Article	IF	Citations
55	The Bony Side of Endothelial Cells in Prostate Cancer. Developmental Cell, 2017, 41, 451-452.	7.0	3
56	Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a–LCOR axis. Nature Cell Biology, 2017, 19, 711-723.	10.3	83
57	Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017, 17, 302-317.	28.4	1,272
58	Determinants of Organotropic Metastasis. Annual Review of Cancer Biology, 2017, 1, 403-423.	4.5	25
59	Ets2 anchors the prometastatic function of mutant p53 in osteosarcoma. Genes and Development, 2017, 31, 1823-1824.	5.9	13
60	Twa1/Gid8 is a \hat{l}^2 -catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis. Cell Research, 2017, 27, 1422-1440.	12.0	44
61	Identification of Nidogen 1 as a lung metastasis protein through secretome analysis. Genes and Development, 2017, 31, 1439-1455.	5.9	41
62	Short-term and long-term clinical outcomes of uncommon types of invasive breast cancer. Histopathology, 2017, 71, 874-886.	2.9	13
63	Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nature Chemical Biology, 2017, 13, 1081-1087.	8.0	47
64	Therapeutic Antibody Targeting Tumor- and Osteoblastic Niche-Derived Jagged 1 Sensitizes Bone Metastasis to Chemotherapy. Cancer Cell, 2017, 32, 731-747.e6.	16.8	133
65	Upholding a role for EMT in breast cancer metastasis. Nature, 2017, 547, E1-E3.	27.8	266
66	Upholding a role for EMT in pancreatic cancer metastasis. Nature, 2017, 547, E7-E8.	27.8	203
67	MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells. Oncotarget, 2017, 8, 83384-83406.	1.8	23
68	Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis. Endocrinology and Metabolism, 2016, 31, 206.	3.0	37
69	Tumor–Stroma Interactions in Bone Metastasis: Molecular Mechanisms and Therapeutic Implications. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 151-161.	1.1	22
70	Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. Cell Metabolism, 2016, 23, 1140-1153.	16.2	296
71	Distinctive properties of metastasis-initiating cells. Genes and Development, 2016, 30, 892-908.	5.9	277
72	MicroRNA-711 is a prognostic factor for poor overall survival and has an oncogenic role in breast cancer. Oncology Letters, 2016, 11, 2155-2163.	1.8	18

#	Article	IF	CITATIONS
73	Cell lineage determinants as regulators of breast cancer metastasis. Cancer and Metastasis Reviews, 2016, 35, 631-644.	5.9	5
74	Emerging therapeutic targets in metastatic progression: A focus on breast cancer., 2016, 161, 79-96.		53
75	The CD44s splice isoform is a central mediator for invadopodia activity. Journal of Cell Science, 2016, 129, 1355-65.	2.0	48
76	Probing the Fifty Shades of EMT in Metastasis. Trends in Cancer, 2016, 2, 65-67.	7.4	84
77	Potential Involvement of Jagged1 in Metastatic Progression of Human Breast Carcinomas. Clinical Chemistry, 2016, 62, 378-386.	3.2	29
78	Imaging $TGF\hat{l}^2$ Signaling in Mouse Models of Cancer Metastasis. Methods in Molecular Biology, 2016, 1344, 219-232.	0.9	7
79	\hat{l}^2 -Spectrin Regulates the Hippo Signaling Pathway and Modulates the Basal Actin Network. Journal of Biological Chemistry, 2015, 290, 6397-6407.	3.4	56
80	Cradle of Evil: Osteogenic Niche for Early Bone Metastasis. Cancer Cell, 2015, 27, 153-155.	16.8	9
81	Bone marrow stroma-derived miRNAs as regulators, biomarkers and therapeutic targets of bone metastasis. BoneKEy Reports, 2015, 4, 671.	2.7	6
82	RAI2: Linking Retinoic Acid Signaling with Metastasis Suppression. Cancer Discovery, 2015, 5, 466-468.	9.4	8
83	Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527, 329-335.	27.8	3,688
84	Bone metastasis and the metastatic niche. Journal of Molecular Medicine, 2015, 93, 1203-1212.	3.9	124
85	Welcoming Treat: Astrocyte-Derived Exosomes Induce PTEN Suppression to Foster Brain Metastasis. Cancer Cell, 2015, 28, 554-556.	16.8	21
86	Regulation of cancer metastasis by cell-free miRNAs. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 24-42.	7.4	87
87	Transplantable Mouse Tumor Models of Breast Cancer Metastasis. Methods in Molecular Biology, 2015, 1267, 367-380.	0.9	16
88	Structural Insights into the Tumor-Promoting Function of the MTDH-SND1 Complex. Cell Reports, 2014, 8, 1704-1713.	6.4	35
89	Genetic Ablation of Metadherin Inhibits Autochthonous Prostate Cancer Progression and Metastasis. Cancer Research, 2014, 74, 5336-5347.	0.9	37
90	Sirtuin 4 Is a Lipoamidase Regulating Pyruvate Dehydrogenase Complex Activity. Cell, 2014, 159, 1615-1625.	28.9	356

#	Article	IF	Citations
91	Targeting tumor–stromal interactions in bone metastasis. , 2014, 141, 222-233.		115
92	A New Lnc in Metastasis: Long Noncoding RNA Mediates the ProMetastatic Functions of TGF- \hat{l}^2 . Cancer Cell, 2014, 25, 557-559.	16.8	75
93	MicroRNAs as regulators of bone homeostasis and bone metastasis. BoneKEy Reports, 2014, 3, 549.	2.7	80
94	The MicroRNA-23b/27b/24 Cluster Promotes Breast Cancer Lung Metastasis by Targeting Metastasis-suppressive Gene Prosaposin. Journal of Biological Chemistry, 2014, 289, 21888-21895.	3.4	53
95	MTDH-SND1 Interaction Is Crucial for Expansion and Activity of Tumor-Initiating Cells in Diverse Oncogene- and Carcinogen-Induced Mammary Tumors. Cancer Cell, 2014, 26, 92-105.	16.8	106
96	PKD1 Phosphorylation-Dependent Degradation of SNAIL by SCF-FBXO11 Regulates Epithelial-Mesenchymal Transition and Metastasis. Cancer Cell, 2014, 26, 358-373.	16.8	196
97	î"Np63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nature Cell Biology, 2014, 16, 1004-1015.	10.3	176
98	DLC1-dependent parathyroid hormone–like hormone inhibition suppresses breast cancer bone metastasis. Journal of Clinical Investigation, 2014, 124, 1646-1659.	8.2	67
99	Pleiotropic Roles of AEG-1/MTDH/LYRIC in Breast Cancer. Advances in Cancer Research, 2013, 120, 113-134.	5.0	33
100	Transcriptional control of cancer metastasis. Trends in Cell Biology, 2013, 23, 603-611.	7.9	94
101	Tumor metastasis: moving new biological insights into the clinic. Nature Medicine, 2013, 19, 1450-1464.	30.7	685
102	Tumor-Induced Osteoclast miRNA Changes as Regulators and Biomarkers of Osteolytic Bone Metastasis. Cancer Cell, 2013, 24, 542-556.	16.8	251
103	The metastasis-promoting roles of tumor-associated immune cells. Journal of Molecular Medicine, 2013, 91, 411-429.	3.9	305
104	Tumor Cell Dissemination: Emerging Biological Insights from Animal Models and Cancer Patients. Cancer Cell, 2013, 23, 573-581.	16.8	365
105	Protein tyrosine phosphatase <i>UBASH3B</i> is overexpressed in triple-negative breast cancer and promotes invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11121-11126.	7.1	57
106	The Endoplasmic Reticulum Acts as a Platform for Ubiquitylated Components of Nuclear Factor κB Signaling. Science Signaling, 2013, 6, ra79.	3.6	36
107	Trefoil factor 1 as a predictive factor of bone metastases in breast cancer Journal of Clinical Oncology, 2013, 31, 11022-11022.	1.6	0
108	Global secretome analysis identifies novel mediators of bone metastasis. Cell Research, 2012, 22, 1339-1355.	12.0	94

#	Article	IF	Citations
109	Transcriptional Network Analysis Identifies BACH1 as a Master Regulator of Breast Cancer Bone Metastasis. Journal of Biological Chemistry, 2012, 287, 33533-33544.	3.4	118
110	Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 2012, 18, 883-891.	30.7	3,098
111	Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. Journal of Clinical Investigation, 2012, 122, 1849-1868.	8.2	401
112	SnapShot: Bone Metastasis. Cell, 2012, 151, 690-690.e1.	28.9	97
113	Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nature Cell Biology, 2012, 14, 1212-1222.	10.3	251
114	Elf5 Regulates Mammary Gland Stem/Progenitor Cell Fate by Influencing Notch Signaling. Stem Cells, 2012, 30, 1496-1508.	3.2	110
115	The proâ€metastatic role of bone marrowâ€derived cells: a focus on MSCs and regulatory T cells. EMBO Reports, 2012, 13, 412-422.	4.5	41
116	Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 2011, 17, 1101-1108.	30.7	552
117	Dysregulation of developmental pathways in bone metastasis. Bone, 2011, 48, 16-22.	2.9	37
118	Signaling pathways in breast cancer metastasis - novel insights from functional genomics. Breast Cancer Research, 2011, 13, 206.	5.0	39
119	Tumor-Derived Jagged 1 Promotes Osteolytic Bone Metastasis of Breast Cancer by Engaging Notch Signaling in Bone Cells. Cancer Cell, 2011, 19, 192-205.	16.8	510
120	Unravelling the complexity of metastasis â€" molecular understanding and targeted therapies. Nature Reviews Cancer, 2011, 11, 735-748.	28.4	318
121	VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging $\hat{l}\pm4\hat{l}^21$ -Positive Osteoclast Progenitors. Cancer Cell, 2011, 20, 701-714.	16.8	445
122	Cell Fusion Hypothesis of the Cancer Stem Cell. Advances in Experimental Medicine and Biology, 2011, 714, 129-140.	1.6	35
123	MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. Journal of Translational Medicine, 2011, 9, 30.	4.4	120
124	Pegylated Composite Nanoparticles Containing Upconverting Phosphors and <i>meso</i> â€Tetraphenyl porphine (TPP) for Photodynamic Therapy. Advanced Functional Materials, 2011, 21, 2488-2495.	14.9	172
125	From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Research, 2011, 21, 245-257.	12.0	85
126	Identification of Staphylococcal Nuclease Domain-containing 1 (SND1) as a Metadherin-interacting Protein with Metastasis-promoting Functions. Journal of Biological Chemistry, 2011, 286, 19982-19992.	3.4	97

#	Article	IF	Citations
127	Rabconnectin-3 Is a Functional Regulator of Mammalian Notch Signaling. Journal of Biological Chemistry, 2010, 285, 34757-34764.	3.4	61
128	Hypoxia and Hypoxia-Inducible Factors: Master Regulators of Metastasis. Clinical Cancer Research, 2010, 16, 5928-5935.	7.0	597
129	Metabolomic Changes Accompanying Transformation and Acquisition of Metastatic Potential in a Syngeneic Mouse Mammary Tumor Model. Journal of Biological Chemistry, 2010, 285, 9317-9321.	3.4	106
130	<i>In vivo</i> Dynamics and Distinct Functions of Hypoxia in Primary Tumor Growth and Organotropic Metastasis of Breast Cancer. Cancer Research, 2010, 70, 3905-3914.	0.9	81
131	Organ-specific enhancement of metastasis by spontaneous ploidy duplication and cell size enlargement. Cell Research, 2010, 20, 1012-1022.	12.0	11
132	Targeting the Transforming Growth Factor- \hat{l}^2 pathway inhibits human basal-like breast cancer metastasis. Molecular Cancer, 2010, 9, 122.	19.2	152
133	Targeting the transforming growth factor- \hat{l}^2 signalling pathway in metastatic cancer. European Journal of Cancer, 2010, 46, 1232-1240.	2.8	86
134	A Novel Mouse Model for Non-Invasive Single Marker Tracking of Mammary Stem Cells In Vivo Reveals Stem Cell Dynamics throughout Pregnancy. PLoS ONE, 2009, 4, e8035.	2.5	21
135	From Breast to the Brain: Unraveling the Puzzle of Metastasis Organotropism. Journal of Molecular Cell Biology, 2009, 1, 3-5.	3.3	26
136	Chemokine (C-C Motif) Ligand 2 Engages CCR2+ Stromal Cells of Monocytic Origin to Promote Breast Cancer Metastasis to Lung and Bone. Journal of Biological Chemistry, 2009, 284, 29087-29096.	3.4	216
137	Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9385-9390.	7.1	105
138	ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes and Development, 2009, 23, 1882-1894.	5.9	264
139	The Multifaceted Role of MTDH/AEG-1 in Cancer Progression. Clinical Cancer Research, 2009, 15, 5615-5620.	7.0	238
140	Cell Fusion as a Hidden Force in Tumor Progression. Cancer Research, 2009, 69, 8536-8539.	0.9	175
141	Metadherin as a link between metastasis and chemoresistance. Cell Cycle, 2009, 8, 2131-2137.	2.6	12
142	Metalloproteinases and osteoblast EGFR signaling in osteolytic bone metastasis of breast cancer. Cell Cycle, 2009, 8, 3804-3805.	2.6	4
143	Preclinical Drug Development Must Consider the Impact on Metastasis. Clinical Cancer Research, 2009, 15, 4529-4530.	7.0	34
144	MTDH Activation by 8q22 Genomic Gain Promotes Chemoresistance and Metastasis of Poor-Prognosis Breast Cancer. Cancer Cell, 2009, 15, 9-20.	16.8	377

#	Article	IF	CITATIONS
145	Imaging transforming growth factor- $\hat{1}^2$ signaling dynamics and therapeutic response in breast cancer bone metastasis. Nature Medicine, 2009, 15, 960-966.	30.7	209
146	Analysis of Cancer Stem Cell Metastasis in Xenograft Animal Models. Methods in Molecular Biology, 2009, 568, 7-19.	0.9	37
147	Cancer Stem Cells and Metastasis: Emerging Themes and Therapeutic Implications. , 2009, , 91-109.		1
148	The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 2008, 283, 14910-14914.	3.4	1,414
149	The emerging role of miR-200 family of MicroRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biology, 2008, 5, 115-119.	3.1	344
150	EGF-like Ligands Stimulate Osteoclastogenesis by Regulating Expression of Osteoclast Regulatory Factors by Osteoblasts. Journal of Biological Chemistry, 2007, 282, 26656-26665.	3.4	99
151	New Tricks Against an Old Foe: Molecular Dissection of Metastasis Tissue Tropism in Breast Cancer. Breast Disease, 2007, 26, 129-138.	0.8	21
152	Beyond tumorigenesis: cancer stem cells in metastasis. Cell Research, 2007, 17, 3-14.	12.0	551
153	Organotropism of Breast Cancer Metastasis. Journal of Mammary Gland Biology and Neoplasia, 2007, 12, 153-162.	2.7	213
154	Pro-metastasis function of $TGF\hat{l}^2$ mediated by the smad pathway. Journal of Cellular Biochemistry, 2006, 98, 1380-1390.	2.6	49
155	Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Review of Molecular Diagnostics, 2005, 5, 385-395.	3.1	25
156	Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13909-13914.	7.1	500
157	Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. Journal of Clinical Investigation, 2005, 115, 44-55.	8.2	606
158	Epithelial-Mesenchymal Transitions. Cell, 2004, 118, 277-279.	28.9	1,369
159	A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3, 537-549.	16.8	2,325
160	A Self-Enabling TGFÎ ² Response Coupled to Stress Signaling. Molecular Cell, 2003, 11, 915-926.	9.7	495
161	E2F4/5 and p 107 as Smad Cofactors Linking the TGF \hat{I}^2 Receptor to c-myc Repression. Cell, 2002 , 110 , 19 - 32 .	28.9	443
162	Smad2 Nucleocytoplasmic Shuttling by Nucleoporins CAN/Nup214 and Nup153 Feeds $TGF\hat{l}^2$ Signaling Complexes in the Cytoplasm and Nucleus. Molecular Cell, 2002, 10, 271-282.	9.7	229

#	ARTICLE	IF	CITATIONS
163	The Human Tap Nuclear RNA Export Factor Contains a Novel Transportin-dependent Nuclear Localization Signal That Lacks Nuclear Export Signal Function. Journal of Biological Chemistry, 1999, 274, 32167-32171.	3.4	59