José Carlos Morante-Filho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3173869/publications.pdf Version: 2024-02-01

		567281	501196
31	1,605	15	28
papers	citations	h-index	g-index
33	33	33	2190
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Creation of forest edges has a global impact on forest vertebrates. Nature, 2017, 551, 187-191.	27.8	323
2	Designing optimal humanâ€modified landscapes for forest biodiversity conservation. Ecology Letters, 2020, 23, 1404-1420.	6.4	279
3	Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 2019, 366, 1236-1239.	12.6	164
4	Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest. PLoS ONE, 2015, 10, e0128923.	2.5	133
5	Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biological Conservation, 2020, 241, 108368.	4.1	93
6	The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biological Conservation, 2016, 196, 1-9.	4.1	89
7	Patterns and predictors of βâ€diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. Journal of Animal Ecology, 2016, 85, 240-250.	2.8	72
8	Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecological Indicators, 2020, 116, 106471.	6.3	63
9	Tropical forest loss and its multitrophic effects on insect herbivory. Ecology, 2016, 97, 3315-3325.	3.2	62
10	Direct and cascading effects of landscape structure on tropical forest and nonâ€forest frugivorous birds. Ecological Applications, 2018, 28, 2024-2032.	3.8	61
11	<scp>ATLANTIC BIRD TRAITS</scp> : a data set of bird morphological traits from the Atlantic forests of South America. Ecology, 2019, 100, e02647.	3.2	40
12	Distance to range edge determines sensitivity to deforestation. Nature Ecology and Evolution, 2019, 3, 886-891.	7.8	33
13	Lessons from a palm: genetic diversity and structure in anthropogenic landscapes from Atlantic Forest, Brazil. Conservation Genetics, 2015, 16, 1295-1302.	1.5	26
14	Compensatory dynamics maintain bird phylogenetic diversity in fragmented tropical landscapes. Journal of Applied Ecology, 2018, 55, 256-266.	4.0	21
15	Landscape composition is more important than local vegetation structure for understory birds in cocoa agroforestry systems. Forest Ecology and Management, 2021, 481, 118704.	3.2	20
16	Landscape composition is the strongest determinant of bird occupancy patterns in tropical forest patches. Landscape Ecology, 2021, 36, 105-117.	4.2	17
17	Ecological correlates of mammal βâ€diversity in Amazonian landâ€bridge islands: from small†to largeâ€bodied species. Diversity and Distributions, 2018, 24, 1109-1120.	4.1	16
18	Forest Cover and Bird Diversity: Drivers of Fruit Consumption in Forest Interiors in the Atlantic Forest of Southern Bahia, Brazil. Tropical Conservation Science, 2016, 9, 549-562.	1.2	13

José Carlos Morante-Filho

#	Article	IF	CITATIONS
19	An Appraisal of Bird-Mediated Ecological Functions in a Changing World. Tropical Conservation Science, 2017, 10, 194008291770333.	1.2	12
20	Tropical forest loss drives divergent patterns in functional diversity of forest and nonâ€forest birds. Biotropica, 2020, 52, 738-748.	1.6	12
21	Forest loss increases insect herbivory levels in human-altered landscapes. Acta Oecologica, 2016, 77, 136-143.	1.1	11
22	Fragmentation and matrix contrast favor understory plants through negative cascading effects on a strong competitor palm. Ecological Applications, 2018, 28, 1546-1553.	3.8	11
23	Preserving 40% forest cover is a valuable and wellâ€supported conservation guideline: reply to Banksâ€Leite <i>et al</i> . Ecology Letters, 2021, 24, 1114-1116.	6.4	7
24	Gene Flow and Genetic Structure Reveal Reduced Diversity between Generations of a Tropical Tree, Manilkara multifida Penn., in Atlantic Forest Fragments. Genes, 2021, 12, 2025.	2.4	6
25	Climate change is expected to restructure forest frugivorous bird communities in a biodiversity hotâ€point within the Atlantic Forest. Diversity and Distributions, 2022, 28, 2886-2897.	4.1	6
26	Seed rain in cocoa agroforests is induced by effects of forest loss on frugivorous birds and management intensity. Agriculture, Ecosystems and Environment, 2021, 313, 107380.	5.3	5
27	Deforestation Simplifies Understory Bird Seed-Dispersal Networks in Human-Modified Landscapes. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
28	Checklist of the birds of Mato Grosso do Sul state, Brazil: diversity and conservation. Papeis Avulsos De Zoologia, 0, 62, e202262029.	0.4	3
29	First records of the Crested Black-Tyrant (Knipolegus lophotes, Tyrannidae) in the State of Mato Grosso do Sul, Brazil. Biota Neotropica, 2012, 12, 311-314.	1.0	1
	Trogon rufus Gmelin, 1788, Baryphthengus ruficapillus (Vieillot, 1818), Notharchus swainsoni (Gray,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
30	(Vieillot, 1817) (Aves): documented records in the state of Mato Grosso do Sul, Brazil. Check List, 2012, 8, 1325.	0.4	1
31	ESTRUTURA DE COMUNIDADES DE AVES DE ÂREAS šMIDAS DO PANTANAL E CERRADO SUL MATO-GROSSENSE. Oecologia Australis, 2019, 23, 1053-1069.	0.2	0