
Saeed Dinarvand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3173810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MHD flow of MgO-Ag/water hybrid nanofluid past a moving slim needle considering dual solutions: an applicable model for hot-wire anemometer analysis. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 488-510.	1.6	42
2	Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating. Energy, 2022, 247, 123411.	4.5	6
3	MHD radiative ohmic heating nanofluid flow of a stretching penetrable wedge: A numerical analysis. Heat Transfer, 2022, 51, 4522-4543.	1.7	10
4	Zinc oxide–silver/water hybrid nanofluid flow toward an offâ€centered rotating disk using temperatureâ€dependent experimentalâ€based thermal conductivity. Heat Transfer, 2022, 51, 4169-4186.	1.7	7
5	Aqua Cobalt Ferrite/Mn–Zn Ferrite Hybrid Nanofluid Flow Over a Nonlinearly Stretching Permeable Sheet in a Porous Medium. Journal of Nanofluids, 2022, 11, 383-391.	1.4	14
6	Off-centered stagnation point flow of an experimental-based hybrid nanofluid impinging to a spinning disk with low to high non-alignments. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 2799-2818.	1.6	32
7	Analysis of Cylindrical Damper Effects on Turbine Meters Accuracy in a Pulsating CNG Suction Line: An Optimal Design through CFD Simulations. International Journal of Chemical Engineering, 2022, 2022, 1-13.	1.4	0
8	Mass-based hybrid nanofluid model for entropy generation analysis of flow upon a convectively-warmed moving wedge. Chinese Journal of Physics, 2022, 77, 2603-2616.	2.0	45
9	Manninen's mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1662-1694.	1.6	15
10	Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: A new combination of theoretical and experimental models. Chinese Journal of Physics, 2021, 71, 574-588.	2.0	74
11	Dual similarity solutions because of mixed convective flow of a double-nanoparticles hybrid nanofluid: critical points and stability analysis. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3319-3342.	1.6	4
12	Effect of Using Hybrid Nanofluid in Thermal Management of Photovoltaic Panel in Hot Climates. International Journal of Photoenergy, 2021, 2021, 1-8.	1.4	8
13	Dual solutions for MHD flow of a water-based TiO2-Cu hybrid nanofluid over a continuously moving thin needle in presence of thermal radiation. Reports in Mechanical Engineering, 2021, 2, 31-40.	4.9	13
14	Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: A development on Falkner–Skan problem. Chinese Journal of Physics, 2021, 74, 406-420.	2.0	55
15	TiO ₂ -Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4775-4796.	1.6	67
16	Rotating Al2O3-H2O nanofluid flow and heat transfer with internal heating, velocity slip and different shapes of nanoparticles. Multidiscipline Modeling in Materials and Structures, 2020, 17, 401-417.	0.6	3
17	Three-dimensional squeezed flow of aqueous magnetite–graphene oxide hybrid nanofluid: A novel hybridity model with analysis of shape factor effects. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2020, 234, 193-205.	1.4	37
18	Generalized second-order slip for unsteady convective flow of a nanofluid: a utilization of Buongiorno's two-component nonhomogeneous equilibrium model. Nonlinear Engineering, 2020, 9, 156-168.	1.4	5

SAEED DINARVAND

#	Article	IF	CITATIONS
19	Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4408-4429.	1.6	62
20	A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Scientific Reports, 2019, 9, 16290.	1.6	89
21	An innovative mass-based model of aqueous zinc oxide–gold hybrid nanofluid for von Kármán's swirling flow. Journal of Thermal Analysis and Calorimetry, 2019, 138, 845-855.	2.0	56
22	Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: a novel hybridity model. Microsystem Technologies, 2019, 25, 2609-2623.	1.2	82
23	Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno's two-component nonhomogeneous nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 448-466.	1.6	19
24	Unsteady General Three-Dimensional Stagnation Point Flow of a Maxwell/Buongiorno Non-Newtonian Nanofluid. Journal of Nanofluids, 2019, 8, 1544-1559.	1.4	35
25	Tiwari-Das nanofluid model for magnetohydrodynamics (MHD) natural-convective flow of a nanofluid adjacent to a spinning down-pointing vertical cone. Propulsion and Power Research, 2018, 7, 78-90.	2.0	52
26	Comment on "3D squeezed flow of γAl2O3–H2O and γAl2O3–C2H6O2 nanofluids: A numerical study, In Hydrogen Energy 42 (2017) 24620–24633â€: International Journal of Hydrogen Energy, 2018, 43, 21627-21628.	nt. J. 3.8	0
27	Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1716-1735.	1.6	132
28	Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chinese Journal of Physics, 2018, 56, 2465-2478.	2.0	195
29	Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme. Advanced Powder Technology, 2017, 28, 900-909.	2.0	61
30	Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technology, 2017, 311, 147-156.	2.1	58
31	Steady laminar mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface in the presence of a magnetic field. Journal of Applied Mechanics and Technical Physics, 2016, 57, 1031-1041.	0.1	6
32	Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 40-62.	1.6	50
33	Unsteady convective heat and mass transfer of a nanofluid in Howarth's stagnation point by Buongiorno's model. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1176-1197.	1.6	37
34	Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das' nanofluid model. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 332-341.	1.3	73
35	Buongiorno's model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid. Advanced Powder Technology, 2015, 26, 1423-1434.	2.0	51
36	Unsteady three-dimensional stagnation-point flow and heat transfer of a nanofluid with thermophoresis and Brownian motion effects. Journal of Applied Mechanics and Technical Physics, 2015, 56, 601-611.	0.1	11

SAEED DINARVAND

#	Article	IF	CITATIONS
37	Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder. Thermal Science, 2015, 19, 549-561.	0.5	48
38	Stagnation-point Flow and Heat Transfer of a Nanofluid Adjacent to Linearly Stretching/Shrinking Sheet: A Numerical Study. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7, 83-90.	0.1	3
39	Brownian Motion Effects on Natural Convection of Alumina–Water Nanofluid in 2â€Ð Enclosure. Heat Transfer - Asian Research, 2014, 43, 720-733.	2.8	5
40	Unsteady mixed convection flow of a nanofluid near orthogonal stagnation point on a vertical permeable surface. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2014, 228, 226-237.	1.4	30
41	Micropolar fluid flow and heat transfer about a spinning cone with Hall current and Ohmic heating. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228, 1900-1912.	1.1	3
42	Magnetohydrodynamic stagnation point flow toward stretching/shrinking permeable plate in porous medium filled with a nanofluid. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2014, 228, 309-319.	1.4	16
43	MHD mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface: a comprehensive report of dual solutions. Heat and Mass Transfer, 2014, 50, 639-650.	1.2	33
44	MHD Mixed Convection Stagnation-Point Flow Over a Stretching Vertical Plate in Porous Medium Filled with a Nanofluid in the Presence of Thermal Radiation. Arabian Journal for Science and Engineering, 2014, 39, 2251-2261.	1.1	31
45	Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid. Chinese Physics B, 2014, 23, 048203.	0.7	50
46	MHD FLOW AND HEAT TRANSFER OVER A NONLINEARLY STRETCHING SHEET IN POROUS MEDIUM FILLED WITH A NANOFLUID. Special Topics and Reviews in Porous Media, 2014, 5, 13-25.	0.6	6
47	Optimal homotopy asymptotic method for convective–radiative cooling of a lumped system, and convective straight fin with temperature-dependent thermal conductivity. Afrika Matematika, 2013, 24, 103-116.	0.4	3
48	Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation. Meccanica, 2013, 48, 643-652.	1.2	42
49	Radiation Effects on MHD Stagnation-Point Flow in a Nanofluid. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5, 5201-5208.	0.1	8
50	The Efficiency of Convective-radiative Fin with Temperature-dependent Thermal Conductivity by the Differential Transformation Method. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6, 1354-1359.	0.1	7
51	Mixed Convection Boundary-layer Flow of a Nanofluid Near Stagnation-point on a Vertical Plate with Effects of Buoyancy Assisting and Opposing Flows. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6, 1785-1793.	0.1	5
52	MHD Flow of an Incompressible Viscous Fluid through Convergent or Divergent Channels in Presence of a High Magnetic Field. Journal of Applied Mathematics, 2012, 2012, 1-12.	0.4	12
53	Two-Dimensional and Axisymmetric Unsteady Flows due to Normally Expanding or Contracting Parallel Plates. Journal of Applied Mathematics, 2012, 2012, 1-13.	0.4	0
54	Series Solution for Steady Three-Dimensional Flow due to Spraying on Inclined Spinning Disk by Homotopy Perturbation Method. Journal of Applied Mathematics, 2012, 2012, 1-15.	0.4	2

SAEED DINARVAND

#	ARTICLE	IF	CITATIONS
55	Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 853-862.	0.9	10
56	The laminar freeâ€convection boundaryâ€layer flow about a heated and rotating downâ€pointing vertical cone in the presence of a transverse magnetic field. International Journal for Numerical Methods in Fluids, 2011, 67, 2141-2156.	0.9	13
57	On explicit, purely analytic solutions of off-centered stagnation flow towards a rotating disc by means of HAM. Nonlinear Analysis: Real World Applications, 2010, 11, 3389-3398.	0.9	29
58	Analytic approximate solution of threeâ€dimensional Navier‣tokes equations of flow between two stretchable disks. Numerical Methods for Partial Differential Equations, 2010, 26, 1594-1607.	2.0	3
59	A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls. Nonlinear Analysis: Real World Applications, 2010, 11, 1502-1512.	0.9	69
60	Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces. Nonlinear Analysis: Real World Applications, 2010, 11, 1159-1169.	0.9	56
61	Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method. Nonlinear Analysis: Real World Applications, 2009, 10, 2346-2356.	0.9	75
62	Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 708-717.	1.7	136
63	A reliable treatment of the homotopy analysis method for viscous flow over a non-linearly stretching sheet in presence of a chemical reaction and under influence of a magnetic field. Open Physics, 2009, 7, .	0.8	15
64	Analytical approximate solutions for two-dimensional viscous flow through expanding or contracting gaps with permeable walls. Open Physics, 2009, 7, .	0.8	14
65	Analytic Approximate Solutions for Unsteady Two-Dimensional and Axisymmetric Squeezing Flows between Parallel Plates. Mathematical Problems in Engineering, 2008, 2008, 1-13.	0.6	101