Liyun Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3173696/publications.pdf

Version: 2024-02-01

567281 552781 42 721 15 26 citations h-index g-index papers 42 42 42 851 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Cholesterol Optical Fiber Sensor Based on CQDs-COD/CA Composite. IEEE Sensors Journal, 2022, 22, 6247-6255.	4.7	7
2	A Simple Cortisol Biosensor Based on AuNPs-DNA Aptamer Conjugate. IEEE Sensors Journal, 2022, 22, 12485-12492.	4.7	5
3	A fiber grating preparation method: Drawing tower grating by single laser pulse with the phase-mask technique. Optical Fiber Technology, 2022, 72, 102955.	2.7	1
4	A real-time and highly sensitive fiber optic biosensor based on the carbon quantum dots for nitric oxide detection. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112963.	3.9	17
5	An Optical Fiber Sensor Based on Fluorescence Lifetime for the Determination of Sulfate Ions. Sensors, 2021, 21, 954.	3.8	3
6	A Versatile Optical Fiber Sensor Comprising an Excitation-Independent Carbon Quantum Dots/Cellulose Acetate Composite Film for Adrenaline Detection. IEEE Sensors Journal, 2021, 21, 10392-10399.	4.7	1
7	Thermal Homeostasis Enabled by Dynamically Regulating the Passive Radiative Cooling and Solar Heating Based on a Thermochromic Hydrogel. ACS Photonics, 2021, 8, 2781-2790.	6.6	48
8	A Sensitive Ammonia Sensor Using Long Period Fiber Grating Coated With Graphene Oxide/Cellulose Acetate. IEEE Sensors Journal, 2021, 21, 16691-16700.	4.7	13
9	Graphene oxide-functionalized long period fiber grating for ultrafast label-free glucose biosensor. Materials Science and Engineering C, 2020, 107, 110329.	7.3	54
10	A colorimetric detection of microRNA-148a in gastric cancer by gold nanoparticle–RNA conjugates. Nanotechnology, 2020, 31, 095501.	2.6	25
11	Importance of Internal Tensile Stress in Forming Low-Loss Fiber Draw-Tower Gratings. Journal of Lightwave Technology, 2020, 38, 1900-1904.	4.6	14
12	A Recyclable Optical Fiber Sensor Based on Fluorescent Carbon Dots for the Determination of Ferric Ion Concentrations. Journal of Lightwave Technology, 2019, 37, 4815-4822.	4.6	14
13	Applications of carbon quantum dots to alleviate Cd2+ phytotoxicity in Citrus maxima seedlings. Chemosphere, 2019, 236, 124385.	8.2	35
14	Ultrasensitive NO Gas Sensor Based on the Graphene Oxide-Coated Long-Period Fiber Grating. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40868-40874.	8.0	36
15	Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Application in Dopamine Fluorescence Probe and Cellular Imaging. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	50
16	Synthesis of hydrophilic P(VDF-TrFE) chloride sensitive polymer films for fluorescence sensing. Journal of Polymer Research, 2019, 26, 1.	2.4	1
17	Preparation of lucigenin-doped silica nanoparticles and their application in fiber optic chloride ion sensor. Optical Materials, 2019, 98, 109467.	3.6	8
18	Thermoelectric Generator Using Space Cold Source. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33941-33945.	8.0	45

#	Article	IF	Citations
19	A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film. Biosensors and Bioelectronics, 2019, 146, 111760.	10.1	86
20	A thermally stable cooler for efficient passive radiative cooling throughout the day. Optical Materials, 2019, 92, 330-334.	3.6	13
21	Thermal Stability of Drawing-Tower Grating Written in a Single Mode Fiber. Journal of Lightwave Technology, 2019, 37, 3073-3077.	4.6	14
22	A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose. Applied Biochemistry and Biotechnology, 2019, 187, 1569-1580.	2.9	24
23	Microstructured optical fiber based chloride ion sensing method for concrete health monitoring. Sensors and Actuators B: Chemical, 2018, 260, 763-769.	7.8	23
24	Synthesis of Fluorescent Carbon Quantum Dots and Their Application in the Plant Cell Imaging. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1546-1550.	1.0	8
25	Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. Royal Society Open Science, 2018, 5, 172149.	2.4	34
26	A "Turn-On―Fluorescence Copper Biosensor Based on DNA Cleavage-Dependent Graphene Oxide-dsDNA-CdTe Quantum Dots Complex. Sensors, 2018, 18, 2605.	3.8	7
27	Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sensors and Actuators B: Chemical, 2018, 273, 9-17.	7.8	39
28	A sensitive optic fiber sensor based on carbon dots fluorophore for ferric ion detection. , 2018, , .		2
29	Characterization and saturable absorption property of graphene oxide on optical fiber by optical deposition. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 882-887.	1.0	2
30	Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications. Scientific Reports, 2016, 6, 21682.	3.3	10
31	Fluorescence detection for H2PO4 - based on carbon dots/Fe3+ composite. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1226-1229.	1.0	4
32	Fluorescent glucose sensing using CdTe/CdS quantum dots–glucose oxidase complex. Analytical Methods, 2016, 8, 2967-2970.	2.7	14
33	A fiber optic sensor for determination of 2,4-dichlorophenol based on iron(II) phthalocyanine catalysis. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1317-1320.	1.0	4
34	Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles. Materials Science and Engineering C, 2015, 57, 31-37.	7.3	20
35	A fiber optic sensor for 2-cholrophenol analysis based on oxygen sensing system. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1178-1182.	1.0	2
36	Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization. Materials Science and Engineering C, 2014, 35, 29-35.	7.3	20

#	Article	IF	CITATIONS
37	Synthesis of Two Novel Water-Soluble Iron Phthalocyanines and Their Application in Fast Chromogenic Identification of Phenolic Pollutants. Catalysis Letters, 2014, 144, 487-497.	2.6	12
38	A novel fluorescence probe 9-(4-(1,2-diamine)benzene-N1-phenyl)acridine for nitric oxide determination. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 848-853.	1.0	2
39	Enhancing heterogeneous catalytic activity of iron (II) phthalocyanine by ethanol and its application in 2,4-dichlorophenol detection. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 567-571.	1.0	2
40	Photorefractivity in a bi-functional polymer nanocomposites sensitized by CdS nanoparticle. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 550-554.	1.0	1
41	Photorefractive effect in a CdS nanoparticles-sensitized polymer composite. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 638-642.	1.0	0
42	Adsorption of graphene oxide with cellulose acetate: insights from DFT. Molecular Physics, 0, , .	1.7	1