
Hitoshi Ueda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3173116/publications.pdf Version: 2024-02-01

Ηιτοςήι Περλ

#	Article	IF	CITATIONS
1	Proteasome activity determines pupation timing through the degradation speed of timer molecule Blimpâ€1. Development Growth and Differentiation, 2018, 60, 502-508.	1.5	7
2	Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Scientific Reports, 2017, 7, 12963.	3.3	29
3	A biological timer in the fat body comprised of Blimp-1, βFTZ-F1 and Shade regulates pupation timing in Drosophila melanogaster. Development (Cambridge), 2016, 143, 2410-6.	2.5	14
4	Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for <i>Drosophila</i> metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1452-1457.	7.1	50
5	Function of the nuclear receptor <scp>FTZ</scp> â€F1 during the pupal stage in <i><scp>D</scp>rosophila melanogaster</i> . Development Growth and Differentiation, 2014, 56, 245-253.	1.5	42
6	The Binding of Multiple Nuclear Receptors to a Single Regulatory Region Is Important for the Proper Expression of EDG84A in Drosophila melanogaster. Journal of Molecular Biology, 2013, 425, 71-81.	4.2	7
7	Regulatory mechanisms of ecdysone-inducible Blimp-1 encoding a transcriptional repressor that is important for the prepupal development in Drosophila. Development Growth and Differentiation, 2011, 53, 697-703.	1.5	17
8	<i>Drosophila</i> Blimp-1 Is a Transient Transcriptional Repressor That Controls Timing of the Ecdysone-Induced Developmental Pathway. Molecular and Cellular Biology, 2007, 27, 8739-8747.	2.3	49
9	Anterior epidermis-specific expression of the cuticle gene EDG84A is controlled by many cis-regulatory elements in Drosophila melanogaster. Development Genes and Evolution, 2005, 215, 545-552.	0.9	9
10	A Simple and Quick Method to Isolate Nuclear Extracts from Pupae of Drosophila melanogaster Cytotechnology, 2005, 49, 67-70.	1.6	4
11	Temporal regulation of the mid-prepupal gene FTZ-F1: DHR3 early late gene product is one of the plural positive regulators. Genes To Cells, 2003, 2, 559-569.	1.2	59
12	betaFTZ-F1 dependent and independent activation of Edg78E, a pupal cuticle gene, during the early metamorphic period in Drosophila melanogaster. Development Growth and Differentiation, 2002, 44, 419-425.	1.5	37
13	Identification of the core domain and the secondary structure of the transcriptional coactivator MBF1. Genes To Cells, 1999, 4, 415-424.	1.2	17
14	Transcriptional activation through interaction of MBF2 with TFIIA. Genes To Cells, 1997, 2, 143-153.	1.2	25
15	Intermittent Expression of BmFTZ-F1, a Member of the Nuclear Hormone Receptor Superfamily during Development of the Silkworm Bombyx mori. Developmental Biology, 1994, 162, 426-437.	2.0	96
16	Defining the sequence recognized with BmFTZ-F1, a sequence specific DNA binding factor in the silkworm,Bombyx mori, as revealed by direct sequencing of bound oligonucleotides and gel mobility shift competition analysis. Nucleic Acids Research, 1991, 19, 3689-3693.	14.5	68
17	Identification and purification of aBombyx morihomologue of FTZ-F1. Nucleic Acids Research, 1990, 18, 7229-7234.	14.5	62