Dirk Stöbener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3173033/publications.pdf

Version: 2024-02-01

		1040056	1281871
31	164	9	11
papers	citations	h-index	g-index
31	31	31	119
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Parametric characterization of ground surfaces with laser speckles. Optics Express, 2022, 30, 12615.	3.4	1
2	A lateral-scanning white-light interferometer for topography measurements on rotating objects in process environments. CIRP Annals - Manufacturing Technology, 2022, 71, 437-440.	3.6	2
3	Characterization of the Interaction of Metalworking Fluids with Grinding Wheels. Journal of Manufacturing and Materials Processing, 2022, 6, 51.	2.2	1
4	Experimental validation of workpiece deformation simulations by means of rigorous boundary condition analysis. Procedia CIRP, 2022, 108, 341-345.	1.9	1
5	Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors. Sensors, 2021, 21, 937.	3.8	16
6	Noise reduction in high-resolution speckle displacement measurements through ensemble averaging. Applied Optics, 2021, 60, 1871.	1.8	2
7	Roughness Measurements with Polychromatic Speckles on Tilted Surfaces. Nanomanufacturing and Metrology, 2021, 4, 237-246.	3.0	10
8	Integrated, Speckle-Based Displacement Measurement for Lateral Scanning White Light Interferometry. Sensors, 2021, 21, 2486.	3.8	4
9	In-Process Measurement of Three-Dimensional Deformations Based on Speckle Photography. Applied Sciences (Switzerland), 2021, 11, 4981.	2.5	6
10	Berührungslose Messung von Pitchwinkelabweichungen an Windenergieanlagen aus 150 m Entfernung. TM Technisches Messen, 2021, .	0.7	1
11	Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows. Applied Optics, 2021, 60, 8716.	1.8	3
12	Tooth flank approximation with root point iteration – potentials and limits in gear metrology. CIRP Annals - Manufacturing Technology, 2021, 70, 427-430.	3.6	0
13	Strömungsfeldmessung der Kühlschmierstoffzufuhr an der Schleifscheibe. TM Technisches Messen, 2021, 88, 785-794.	0.7	1
14	Feasibility of Optical Flow Field Measurements of the Coolant in a Grinding Machine. Applied Sciences (Switzerland), 2021, 11, 11615.	2.5	4
15	Revealing the impact of laser-induced breakdown on a gas flow. Measurement Science and Technology, 2020, 31, 027001.	2.6	4
16	Indirect fluorescence-based in situ geometry measurement for laser chemical machining. CIRP Annals - Manufacturing Technology, 2020, 69, 481-484.	3.6	2
17	In-process workpiece displacement measurements under the rough environments of manufacturing technology. Procedia CIRP, 2020, 87, 409-414.	1.9	6
18	An optical method to determine the strain field on micro samples during electrohydraulic forming. Procedia CIRP, 2020, 87, 438-443.	1.9	2

#	Article	IF	CITATIONS
19	Uncertainty and Resolution of Speckle Photography on Micro Samples. Nanomanufacturing and Metrology, 2020, 3, 91-104.	3.0	10
20	Lateral scanning white-light interferometry on rotating objects. Surface Topography: Metrology and Properties, 2020, 8, 035006.	1.6	5
21	Messung thermomechanischer Beanspruchungen in laufenden Schleifprozessen. TM Technisches Messen, 2020, 87, 201-209.	0.7	2
22	Induction of Highly Dynamic Shock Waves in Machining Processes with Multiple Loads and Short Tool Impacts. Applied Sciences (Switzerland), 2019, 9, 2293.	2.5	5
23	Particle image velocimetry in refractive index fields of combustion flows. Experiments in Fluids, 2019, 60, 1.	2.4	10
24	In-process roughness quality inspection for metal sheet rolling. CIRP Annals - Manufacturing Technology, 2019, 68, 523-526.	3.6	15
25	Laser light source limited uncertainty of speckle-based roughness measurements. Applied Optics, 2019, 58, 6436.	1.8	12
26	Methode zur Erfassung periodischer Sub-WellenlÄ r gen-Nanostrukturen fýr den In-Prozess-Einsatz. TM Technisches Messen, 2018, 85, 88-96.	0.7	0
27	Investigations on Material Loads during Grinding by Speckle Photography. Journal of Manufacturing and Materials Processing, 2018, 2, 71.	2.2	10
28	Precise In-Process Strain Measurements for the Investigation of Surface Modification Mechanisms. Journal of Manufacturing and Materials Processing, 2018, 2, 9.	2.2	15
29	Model-assisted measuring method for periodical sub-wavelength nanostructures. Applied Optics, 2018, 57, 92.	1.8	1
30	In-Prozess-Charakterisierung spiegelnder OberflÄ z hen mit Laserstreulicht und leistungsfÄ ¤ iger Hardware. TM Technisches Messen, 2017, 84, 557-567.	0.7	1
31	Application of an in situ measuring system for the compensation of wall thickness variations during turning of thin-walled rings. CIRP Annals - Manufacturing Technology, 2013, 62, 511-514.	3.6	12